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Abstract

application on a specific hardware platform.

As technology scales for increased circuit density and performance, the management of power consumption in
embedded systems is becoming critical. Because the operating system (OS) is a basic component of the embedded
system, the reduction and characterization of its energy consumption is a main challenge for the designers. In this
work, a flow of low power OS energy characterization is introduced. The variation of the energy and power
consumption of the embedded OS services is studied. The remainder of this article details the methods used to
determine energy and power overheads of a set of basic services of the embedded OS: scheduling, context switch
and inter-process communication. The impacts of hardware and software parameters like processor frequency and
scheduling policy on the energy consumption are analyzed. Also, models and laws of the power and energy are
extracted. Then, to quantify the low power OS energetic overhead, the obtained models are integrated in the system
level design. Our method allows estimating the energy consumption of the low power OS services when running an

Introduction

Nowadays energy consumption in embedded systems
has become one of the key challenges for the software
and hardware designers. The embedded operating sys-
tem (OS) serves as an interface between the application
software and the hardware. It is an important software
component in many embedded system applications since
it drives the exploitation of the hardware platform by
offering a wide variety of services: task management,
scheduling, inter-process communication (IPC), timer
services, I/O operations and memory management. Also,
the embedded OS manages the overall power consump-
tion of the embedded system components. It includes
many power management policies aiming at keeping com-
ponents into lower power states, thereby reducing energy
consumption.

The embedded systems become so complex as they con-
tain various hardware devices and software application
which interacts with the users to handle the system. The
complexity of the hardware and software layers necessi-
tates the use of a specific support allowing application to
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exploit efficiently the hardware platform. This support is
the embedded OS; it includes libraries and device drivers
and offers a wide variety of services. Figure 1 shows the
disposition of embedded systems’ different layers. The
application is represented by a set of tasks {7},1 < i < n}.

Under the French research program Open-PEOPLE
project [1], we aim at characterizing and optimizing the
energy consumption of the embedded OS services. In
this article, variation of the scheduling routines, IPC and
context switch energy consumption as a function of hard-
ware and software parameters is studied. The remainder
of this article is organized as follows: Related works are
described in Section “Related works” Energy characteriza-
tion and estimation flow is presented in Section “Energy
characterization and estimation flow”. Section “Hardware
platform” introduces the hardware platform and explains
the measurement setup for measuring the energy con-
sumption. Then, Sections “Embedded OS power and
energy models” and “Experimental results” explains our
methodology to characterize the embedded OS services
energy overhead and describes experimental results and
derived models. Section “Embedded OS services models
integration in the system level design flow” shows the low
power OS services’s models integration in the system level
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Figure 1 The different layers of an embedded system.

design flow. Finally, Section “Conclusion” concludes the
article and proposes the future work.

Related works

In order to characterize energy and power overhead of
embedded OSs, several studies have proposed evaluating
embedded OS energy consumption at different abstrac-
tion levels.

Li and John [2] introduced a routine level power model.
According to them, the elementary unit is the OS service
routine. So, they consider the energy consumed by the OS
services as the sum of those consumed by each routine.
They proposed a model of power consumption based on
the correlation that they found between the power and the
instruction per cycle (IPC) metric.

Acquaviva et al. [3] proposed a new methodology to
characterize the OS energy overhead. They measured the
energy consumption of the eCos real time OS (RTOS)
running on a prototype wearable computer, HP’s Smart-
Badgelll. Then, they studied the energy impact of the
RTOS both at the kernel and at the 1/O driver level and
determine the key parameters affecting the energy con-
sumption. This work studied the relation between the
power and performance of the OS services and the CPU
clock frequency. Acquaviva et al. perform analysis but they
did not model the energy consumption of the OS services
and drivers.

Tan et al. [4] modeled the OSs energy consumption at
the kernel level. They classify the energy into two groups:
the explicit energy which is related directly to the OS
primitives and the implicit energy which results from the
running of the OS engine. The authors explained their
approaches to measure these classes of energy and they
proposed energy consumption macro models. Then, Tan
et al. validated their methodology on two embedded OSs,
nCOS and Linux OS. However, the scope of the pro-
posed work in [4] is limited in some ways as it targets
the OS’s running on a single processor. Also, the authors
do not consider the I/O drivers in the proposed energy
consumption model.

Dick et al. [5] analyzed the power consumption of the
wCOS OS which is running several embedded applica-
tions on a Fujitsi SPARClite processor based embedded
system. The authors demonstrated that the OS functions
have an important impact on the total energy consump-
tion. This impact depends on the complexity of the appli-
cations. The presented work represents only an analysis
of OS power consumption. Dick et al. did not propose an
energy consumption model.

Baynes et al. [6] described their simulation environ-
ment, Simbed, which evaluates the performance and
energy consumption of the RTOS and embedded appli-
cations. The authors compared three different RTOS’s:
uCOS, Echidna and NOS. They found that the OS over-
head depends on the applications. It is so high for
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the lightweight applications and diminishes for more
compute-intensive applications. Nevertheless, Baynes
et al. presented high level energy measurements (simula-
tion), the extracted models are not realistic because they
are not deduced from measurements on actual hardware
platform. Also, the energy consumption of OS services
compared with the total application energy consump-
tion was not calculated. Guo et al. [7] proposed a novel
approach using hopfield neural network to solve the prob-
lem of RTOS power partitioning; they target to optimally
allocate the RTOS’s behavior to the hardware/software
system. They defined a new energy function for this
kind of neural network and some considerations on the
state updating rule. The obtained simulation results show
that the proposed method can perform energy saving
up to 60%. This work does not consider energy macro-
modeling and RTOS services. Zhao et al. [8] propose a
new approach to estimate and optimize the energy con-
sumption of the embedded OS and the applications at a
fine-grained level. The work is based on power model and
anew estimation model for OS energy consumption. Zhao
et al. demonstrate that the approach can characterize and
optimize the energy consumption of fine-grained software
components. Fournel et al. [9] present a performance and
energy consumption simulator for embedded system exe-
cuting an application code. This work allows designers to
get fast performance and consumption estimations with-
out deploying software on target hardware, while being
independent of any compilation tools or software compo-
nents such as network protocols or OSs.

Fei et al. [10] interest in reducing the energy consump-
tion of the OS-driven multi-process embedded software
programs by transforming its source code. They minimize
the energy consumed in the execution of OS functions
and services. The authors propose four types of transfor-
mations, namely process-level concurrency management,
message vectorization, computation migration and IPC
mechanism selection. Fei et al. evaluate the applicabil-
ity of theses techniques in the context of an embedded
system containing an Intel StrongARM processor and
embedded Linux OS. They manage process-level concur-
rency through process merging to save context switch
overhead and IPCs. They modify the process interface by
vectorizing the communications between processes and
selecting an energy-efficient IPC mechanism. This work
attempt to relocate computations from one process to
another so as to reduce the number and data volume
of IPCs. These transformations provide complementary
optimization strategies to traditional compiler optimiza-
tions for energy savings. Dhouib et al. [11] propose a
multi-layer approach to estimate the energy consumption
of embedded OSs. The authors start by estimating energy
and power consumption of standalone tasks. Then they
add energy overheads of the OS services which are timer
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interrupts, IPC and peripheral device accesses. They val-
idate the multi-layer approach by estimating the energy
consumption of an M-JPEG encoder running on linux
2.6 and deployed on a XUP Virtex-II pro development
board. In the recent works, low power OSs, which are
the embedded OS allowing the binding of the application
on hardware platform adapting low power techniques, are
not considered. It is not mentioned what are the pro-
cessor capabilities and which low power policy is used.
In fact, the energy consumption of OS services depends
on low power policy used. For example, we will see in
this article that the context switch energy overhead is
important due to the use of specific technique, aiming
at reducing the power consumption, that stimulates this
service. Creative chip designers have come up with a vari-
ety of methods and techniques to reduce power without
impacting system performance. For instance, the embed-
ded system used in this work, OMAP35x EVM board, has
three basic methods to reduce the power consumption:
dynamic voltage and frequency scaling (DVES), adap-
tive voltage scaling (AVS) and dynamic power switching
(DPS). This article relies on studying the energy overhead
of embedded OS adapting DVES technique.

Energy characterization and estimation flow

Power and energy consumption are important perfor-
mance metrics for embedded systems. In electrical cir-
cuits, the power is the product of the potential difference
(voltage) and the electric current. Formally, the energy
consumed by a system is the amount of power dissipated
during a certain period of time. For instance, if a task T
occupies a processor during an execution interval of [a,b]
then the energy consumed by the processor E7 during this
time interval is given by this Equation (1):

b
ET:_/ P(t)dt (1)

The proposed method consists in extracting an energy
model of the OS power overhead. The inputs are the
embedded OS, the application, and the hardware plat-
form. As showed in Figure 2, to characterize the energy
consumed by the services of the embedded OS, a set of
benchmarks, which are test programs that stimulate each
service separately, are implemented. These programs are
compiled and linked to the OS. In the energy analysis
step, a set of parameters are varied: hardware and soft-
ware parameters which influence the energy consumption
are identified then energy profiles are traced. The energy
traces obtained are able to characterize the energy over-
head of the OS services and then to model the power and
energy consumption. After extracting the energy models,
we determine the energy and power laws, as showed in
Figure 3.
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We focus on the correlation between the energy con-
sumed by the application and the services of the OS.
The energy link proposed in the model is depicted by
Equation (2).

VTi; ETi = Eintertask + (2)

Z 8ij x Es;

1<j<p

Where E7; represents the energy consumed by the task
T;, Eintertask i the energy consumed by the task routines
and operations, p is the number of services used by the
task Tj, &;; is energy consumption rate of the task T;
using the service S; and E; the energy consumption of the
service §;.

We consider ¢ the total number of the OS services, x; the
number of the parameters that influence Eg; the energy
consumption of the service Sj,1 <j < t.

The set of parameters appropriate to the energy over-
head of the service S; is { Paramjy, 1 < j < £ 1< k
< «; }. The function f describes the variation of Eg; with
Param;. We compute the energy consumption of the
service S; following this Equation (3).

ES) = Y fe(Param;y) 3)

lfkij

According to the amount of energy consumed by each
service when executing the application, we classify the

OS’s energy overhead into two groups: a basic energy
of the services which consume an amount of energy
bigger than an energy threshold Ey, this threshold is
the average energy consumed by the different OS ser-
vices. The remaining services are the secondary services.
The set of basic and secondary services are respectively
{BS;,1 < j < p}and {S5,1 < k =< g} where p and ¢
are respectively the number of basic and secondary ser-
vices. This expression (4) depicts the energy consumed by
the OS Eps when running a task 7;. The Equation (5) ver-
ifies whether the totality of the energy consumed by the
OS when running the application, having # tasks, is well
distributed between the services.

Eos = Z @;j X Eps; | + Z Bik x Ess, | (4)
1<j=<p 1<k=q
Where
Do X i+ D B | =100% (5)
1<i<n \1=5j<p 1<k=<q

@;;: energy consumption rate of the task T; using the ser-
vice BS;. B; x: energy consumption rate of the task 7; using
the service SSy. Eps; and Egs, represent respectively the
energy consumed by the service BS; and SSy.

In the next section, we will explain the approach used to
characterize the embedded OS services energy overhead

Figure 3 Estimation of the OS energy consumption.
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and its variation with hardware and software parameters.
Next section describes the hardware platform used and
details the energy measurement setup.

Hardware platform

The target hardware platform is the OMAP35x EVM
board from MISTRAL (TEXAS INSTRUMENTS). It
is equipped with the OMAP 3530 processor [12], an
advanced superscalar ARM Cortex-A8 RISC Core. The
embedded OS used is Linux which is supported for use
with the OMAP35x EVM. As shown in Figure 4, in The
measurement platform includes a dedicated server to con-
figure the OMAP EVM and to control the energy con-
sumption measurements on this board. It consists of a
computer wire-connected to the board. We use the DHCP
protocol to obtain an IP address of the board from the
server. The TFTP (Trivial File Transfer Protocol) and NFS
(Network File System) protocols are used to load and boot
the OS image from the server and through the Ethernet.
The test programs are executed on the hardware platform
and the energy dissipated by the processor is determined:
The voltage drop Vo across a jumper J6 pins connected
in series with the OMAP 3530 processor is measured.
Then, the current consumed is calculated after dividing
Varop by a shunt resistance R in parallel with the jumper
pins.

Embedded OS power and energy models

In this section, embedded OS services energy character-
ization approaches are introduced, three important ser-
vices are studied: the scheduling, the context switch and
IPC.

The scheduling routines

Scheduling routines and operations could generate power
overhead on the processor and/or memory components.
They are considered as system calls and only consist in
switching the processor from unprivileged user mode to
a privileged kernel model. To quantify power and energy
overhead of embedded OS scheduler routines and opera-
tions, we have to build test programs containing threads
with different priorities, we measure in a first step the

Figure 4 The measurement framework.
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average energy consumed by the standalone tasks without
scheduling routines, and then with scheduling routines.

Escheduling represents the energy consumed by the
scheduling operations. It is calculated as showed in this
Equation (6):

EScheduling = Ewithsch — Ewithoutsch (6)

Where Eyithsch and Eyithoutsch represent respectively the
energy consumed by the benchmarks with scheduling
routines and without scheduling routines.

We vary several parameters when running the test pro-
grams. The applicative parameter that we can change
is the scheduling policy. We also modify the processor
frequency as a hardware parameter. We are interested
in studying the influence of three scheduling policies:
SCHED_FIFO, SCHED RR and SCHED_OTHER.

SCHED _FIFO policy is used with static priorities higher
than 0, it is a scheduling algorithm without time slic-
ing. Under this policy, a process which is preempted by
another process having higher priority will stay at the head
of the list for its priority and will resume execution as
soon as all processes of higher priority are blocked again.
If there are two SCHED_FIFO processes having the same
priority, the process which is running will continue its
execution until it decides to give the processor up. The
process having the highest priority will use the processor
as long as it needs it.

SCHED_RR policy enhances the SCHED_FIFO one;
hence, everything described above for SCHED_FIFO also
applies to SCHED_RR except that each process is only
allowed to run for a maximum time called quantum. If a
SCHED_RR process has been running for a time period
equal to or greater than the time quantum, it will be put at
the end of the priority list. A SCHED_RR process that has
been preempted by a higher priority process subsequently
resumes execution as a running process will complete the
unexpired portion of its round robin time quantum.

SCHED_OTHER policy is only used at static priority
0. To ensure a fair progress among the processes, the
SCHED_OTHER scheduler elects a process to run from
the static priority O list based on a dynamic priority that
is determined only inside this list. The dynamic priority is
based on the nice level and increased for each time quan-
tum the process is ready to run, but denied to run by the
scheduler.

Figure 5 shows the evolution of the power overhead of
the scheduler routines Pscpeduling OVver the scheduling pol-
icy. We can see that the energy consumed when we use
SCHED_OTHER is important compared to SCHED_FIFO
and SCHED_RR. This is due to the additional oper-
ations (nice or setpriority() system calls) used when
the scheduler SCHED_OTHER calculates and increases
the dynamic priority for each time quantum. Pscheduling
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increases with the rise of the number of processes, this
is due to the increase of the scheduler of routines, such
as the assignment of the priorities, with the number of
processes.

Figure 6 depicts the variation of measured and
estimated scheduling routines energy consumption
with processor frequency. The scheduling policy is
SCHED_OTHER and the number of processes is 10. The
energy consumption law for the scheduling routines is
depicted by Equation (7). The average estimation error is
around 0.355%.

The obtained results are explained by considering that
the energy is the product between the average power and
the total execution time. If we consider that the steady
state current (and hence the power) profile obtained when
running this experiment is almost flat since the proces-
sor does not access the external bus, the energy cost of
the scheduler is proportional to the execution time of the
scheduling routines which decrease with the increase of
the frequency.

Escheduling(f) = (—59.649 x 1072 x f) + (3.106 x 10%) (7)

The context switch

The context switch is a mechanism which occurs when
the kernel changes the control of the processor from an
executing process to another that is ready to run. The
kernel saves the state of current process including the pro-
cessor register values and other data that describes this
state. Then, it loads the saved state of the new process for
execution.

In the majority of recent work presented previously,
the authors do not take into account the energy and
time overheads of this service when studying the energy
consumption of the OSs. They include it with the schedul-
ing service, but the two services are distinct. Actually,
in the embedded systems, the processor has two oper-
ating modes: the kernel mode and user mode. The pro-
cesses running on kernel and user mode are called kernel
and user processes respectively. The user process runs
in a memory space which can be swapped out when
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Figure 6 Scheduling routines energy variation as a function of CPU frequency.
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necessary. When the processor needs the user process
to execute a kernel code, the process become in ker-
nel mode with administrative privileges. In this case, the
processor has no restrictions while executing the instruc-
tions and will access to key system resources. Once the
kernel process finishes its workload, it returns to the
initial state as a user process. The scheduler switches
the processor from the user mode to a kernel mode
via system calls; this mechanism is named the mode
switch. Unlike the mode switch, the context switch con-
sists in switching the processor from one process to
another.

Context switching introduces direct and indirect over-
heads [13]. Direct context switch overheads include saving
and restoring processor registers, flushing the proces-
sor pipeline, and executing the OS scheduler. Indirect
overheads involve the switch of the address translation
maps used by the processor when the threads have differ-
ent virtual address spaces. This switch perturbs the TLB
(CPU cache that memory management hardware unit
uses to improve virtual address translation speed) states.
Also, the indirect context switch includes the perturba-
tion of the processor’s caches. In fact when a thread 77 is
switched out and a new thread T starts the execution, the
cache state of T} is perturbed and some cache blocks are
replaced. So, when 77 resumes the execution and restores
the cache state, it gets a cache misses. Besides, the OS
memory paging represents a source of the indirect over-
head since the context switch can occur in a memory page
moved to the disk when there is no free memory. Prior
research has shown that indirect context switch overheads
[14], mainly the cache perturbation effect, are significantly
larger than direct overheads.

To characterize the energy consumption of the con-
text switch, we create a set of threads in a multitasking
environment using the POSIX standard. As depicted in
Figures 7 and 8, the test-bench consists in creating two
threads P1 and P2 and generating a number of context-
switches as detailed in our recent work [15]. In fact in
step 1, only one context switch is generated and in step #,
n context switches are generated. In the remainder of this
article, 7cs represents the time of the context switch, S;;
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the j-th section of the process P; and Tj; is the execution
time of the section S;;.

The total execution time of the benchmark in step 1 and
step n are, respectively Tsep1 and Tepy,. They are depicted
by these Equations (8) and (9):

TStep 1 = Texec; + Tcs + Texecy (8)
TStepn= Y Tii+ Y Toj+ (nx Tcs) )
1<i<p 1<j<q

Where p and g represents respectively the number of
sections of P; and P,. The context switch time Tcs and
the context switch power overhead Pcs are calculated
following these Equations (10) and (11):

Tes = (Tstepn -

Tstepl)/(n -1 (10)

Pcs = (Pgtepn — stepl)/(” -1 (11)

The context switch energy overhead is computed as
(12):

Ecs = ((Pstepn * Tstepn) — (Pstep1 * Tstep1))/(n—1) (12)

Where Pstep1 and Pgiepn are, respectively the average
power consumption of the benchmarks in step 1 and
step n.

We execute the test programs following the character-
ization approach. Then, we vary the scheduling policy
and the frequency, we note the power and performance
variations and we extract energy models.

The scheduling policy impact on the context switch overhead
In our experiments, the scheduling policy and the number
of context switches are varied and the energy consumed

Py
A
I
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<« »< D > £ t
Texec, Tcs Texec,
Figure 7 Step 1.
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is measured when a context switch occurred. The varia-
tion of the energy dissipated according to the number of
context switches and the scheduling policy is presented in
Figure 9. This figure compares the decrease of the context
switch energy overhead for the two processes by varying
the number of context switches.

It is noted that the context switch energy overhead
decreases with the increase of the number of context
switches. In fact, to switch from one process to another,
the state of each process should be saved in a data struc-
ture named process control block (PCB). The energy over-
head of the creation of the PCB is accounted with the
context switch energy overhead and is divided between
the context switches so that if the number of context
switches increases the average Ecs per context switch-
ing decreases. Also, when the scheduling policy used is
SCHED _FIFO, the context switch energy overhead is more
important than the energy for the SCHED_RR scheduling
policy. In fact, under the round robin scheduling policy,
the processor assigns time slices (quantum) to each pro-
cess. So, before the context switches that we generate,
there is another context switches that occurred automati-
cally due to the expiration of the quantum of the process
P1. Consequently, the PCB is created during the automatic

context switch. The energy overhead of the PCB creation
is not accounted with the energy of the context switch that
we generate: Ecs. But, under the FIFO scheduling policy,
the processor does not switch automatically from the pro-
cess P1 to P2 only if P1 terminates its execution so that
the energy overhead of the PCB creation is accounted with
Ecs.

We note that SCHED_OTHER processes are non real
time processes, but, SCHED_RR and SCHED_FIFO are
real time processes. So, SCHED_RR and SCHED_FIFO
processes need more memory than SCHED_OTHER pro-
cesses to save the processor registers because they execute
more operations and calculations in order to respect the
real time constraints so that they consume more time
to change the context. Then, the context switch of the
SCHED_OTHER processes consume less energy than the
SCHED_RR and SCHED _FIFO ones.

The processor frequency impact on the context switch
overhead

In this section, the impact of processor frequency on the
context switch overhead for static and dynamic frequency
cases is discussed.

Ecs (nJ)
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4501 *
4001 - x- SCHED RR |
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300 * ~

Figure 9 Context switch energy consumption versus the number of
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Static frequency case

For this experiment, the scheduling policy and the num-
ber of context switches are fixed. The benchmarks of step
1 and step n with a static frequency are executed. The
CPU frequency is varied afterwards and the benchmarks
are re-executed.

In complementary metal-oxide semiconductor (CMOS)
technology-based systems, there are two principle sources
of power dissipation: dynamic power dissipation, which
arises from the repeated capacitance charge and discharge
on the output of the hundreds of millions of gates in
modern chips, it depends on the processor frequency,
and static power dissipation which arises from the elec-
tric current that leaks through transistors even when
they are turned off. The hardware platform used in the
current work reduces standby power consumption by

reducing power leakage so that static power is negligible
compared to the dynamic power. Figure 10 plots the mea-
sured and estimated context switch power, mainly the
dynamic power, overhead as a function of the frequency.
Context switch power variation with processor frequency
follows the law presented in the equation below (13). The
average error of the proposed methodology results against
the physical measurements is about 3.4%.
Pes(f) = (44 x 1072 x f) + 0.3041 (13)

Where f is the CPU frequency, the unit of Pcs and f is
respectively mW and MHz.

The voltage Vgrop across the processor increases with
the rise of the processor frequency so that the power
consumption increases with the frequency.
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Figure 11 Context switch energy variation as a function of dynamic CPU frequency scaling.
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Dynamic frequency case
The core frequency is dynamically changed during the test
of the benchmarks: The test programs are executed in step
1 and step n. The processes P1 and P2 are executed respec-
tively at a frequency F1 and F2. So, when the processor
preempts the process P1 and executes the process P2, the
core frequency changes from F1 to F2; and inversely.
Figure 11 illustrates the context switch energy variation
which depends on the frequency difference. Actually, for
the processor core, a set of voltage and frequency cou-
ples is specified, named operating points. Running on high
frequency requires also high voltage and inversely. For
raising the frequency and supply voltage, the micropro-
cessor sets a new voltage identifier) code to have a higher
output voltage than the current one, and conversely. This
operation leads to time and energy overhead [16]. Also,
the more important the difference between F1 and F2 is,
the higher context switch energy is. This is due to the per-
turbation of the processor’s cache memory resulting from
the frequency of the processor bus which varies with the
processor frequency.

Inter-process communication

Inter-process communications (IPC) allow threads in one
process to share information with threads in other pro-
cesses, and even processes that exist on different hardware
platforms. The embedded OS explicitly copies informa-
tion from a sending process’s address space into a distinct
receiving process’s address space. Examples of IPC mech-
anisms are pipes, message passing through mailboxes and
shared memory. To characterize the power and energy
consumption of IPC, we have to execute test programs,
each one repeatedly calling an IPC mechanism. The aim
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Table 1 IPC power models according to processor
frequency

IPC mechanism Power model: Pipc (mW) Average error (%)

Anonymous pipe  0.347 x F + 6474 0.293
Named pipe 0.333 x F +4.968 2113
Shared memory 0217 x F+ 8542 227

is to get an average power and performance overhead of
the IPC mechanism when running the programs. The set
of parameters that we could vary are: the type of IPC
mechanism, the amount of data shared through the IPC
(applicative parameters), the processor frequency. Then,
we build the power models of the IPC mechanisms. The
test programs were developed for three communication
mechanisms which are shared memory, named pipes and
anonymous pipes. The message length varies from 1B to
8 kB, which is the maximum size allowed by the Linux
kernel, communications are performed within the same
process to avoid process context switching. We have also
executed test programs with a high real time priority to
avoid preemptive context switch. Figure 12 shows that
power consumption Py, is varying with the processor fre-
quency F. Thus, the power model of IPC mechanisms is:
Ppe(F) = (@ x F) + (14)
Where o and B are coefficients of the model. The unit
of Pjyc and F is, respectively mW and MHz. Power models
are presented in Table 1.
Figure 13 depicts the influence of the message size
msz on the energy consumption of IPC: Ejc. The energy

300 -
«« o+« AnOnymous pipe
250 - >
=—[l— Named pipe ,
B
200 - Shared memory T
S =
T 150 e
R
E —
g 100 - '.-""
o _— e
L
50 -
O T T 1
125 250 500 720
Processor frequency (MHz)
Figure 12 IPC power variation as a function of CPU frequency.
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overhead increases exponentially with the rise of the size
of data transmitted. Equation (15) represents the energy
model:

(6 xmsz)

Eipc(msz) =X x e (15)

Where A and § are coefficients depending on the mes-
sage size and the IPC mechanism. The unit of Ejpc and
msz is respectively n] and Bytes. Energy models are pre-
sented in Table 2.

Embedded OS service’s models integration in the
system level design flow

The OS energy and power models are integrated in the
system level design flow. The energy and power estimation
is targeting the system design including the software and
hardware components.

The integration of models of the OS in energy and
power estimation tools is necessary to achieve estimations
at system level and to quantify the energy and power over-
head of the embedded OS energy overhead. Accordingly,
we propose an approach, as demonstrated in Figure 14,
revolving around three focal concepts: Modeling, code
transformation and energy and power estimation.

An AADL [17] model relies on the platform model that
contains all the components and connections instances
of the application. It also references the implementation
models of all the components instances, found in the
AADL models library. The AADL model describes also

Table 2 IPC energy models according to message size

IPC mechanism Energy model: Ejpc (nJ) Average error (%)

Anonymous pipe 3068 x !03:9%107xmsz 2.149
Named pipe 3003.8 x #496+10~6xmsz 1728
Shared memory 10609 x e#89#107°xmsz 1468

the hardware of the physical target platform: the proces-
sor, the memory, and the bus entity which are necessary
to processes and threads execution. Taking into account
the intra-task properties, such as the deadline and worst
case execution time, and the intra-task aspects such as
the events and IPC, we define the binding properties that
are necessary to the deployment of the application’s tasks
and embedded operating services on the target platform.
Using a textual and graphical modeling tool OSATE, we
automatically generate the corresponding textual deploy-
ment file: The AADL model is mapped to an XML file. To
achieve the simulations, we use a multiprocessor simula-
tion tool named STORM [18] (Simulation TOol for Real-
time Multiprocessor scheduling). As shown in Figure 15,
The input of this tool is the specifications of the hardware
and software architectures together with the scheduling
policy; it simulates the system behavior using all the char-
acteristics (task execution time, processor functioning
conditions, etc.) in order to obtain the chronological track
of all the scheduling events that occurred at run time, and
compute various real-time metrics in order to analyze the
system behavior and performances from various point of
views. It is described in a XML input file in which specific
tags and attributes have to be used, and where references
to predefined components are made.

As a result, simulated outputs can be computed as:
either user readable in the form of diagrams or reports, or
machine readable intended for a subsequent analysis tool.
The user interacts with STORM through a user-friendly
graphical user interface which is composed of command
and display windows. The XML file generated from the
AADL model having the extension “aaxl” is not recog-
nized by the STORM simulator. For this reason, in the
code transformation step, we adapt the file generated to
the simulator structure by parsing existing file “aaxl” and
extracting the data needed to generate the input file of the
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Figure 14 Os power and energy models integration in the system level design flow.

simulator. To extract the required data from the “aaxl” file,
we use the java API JDOM which allows us to manipulate,
and output XML data from Java code so that we can read
and write XML data without the complex and memory-
consumptive options that current API offerings provide.
Because JDOM uses the Java Collections API to manage
the tree, we transform the “aaxl” file to a JDOM tree, and
then we extract each data by walking the tree and iterating
the document.

Thanks to the significant evolution in processor tech-
nology over the last few years, processors with variable
voltages and frequencies are now available, they adapt low
power and energy techniques to minimize the energy con-
sumption. Reduction in supply voltage requires reduction
in operating frequency. That is why, when calculating the
overhead of OS services, we execute the application on the
hardware platform while adapting a low power technique:
The dynamic voltage frequency scaling (DVES) technique,

XMLFile
Diagrams
Hardware Software
architecture architecture >
Configuration parameters
Report

Simulator } >

Library

Software
components

Hardware
components

Figure 15 STORM simulator input and output file system.
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Table 3 H.264 video decoder application tasks features
Task name WCET (ms) BCET (ms) Period (ms) Deadline (ms) Activation date
(ms)
New _frame 1 1 19 19 0
Nal_dispatch 2 1 5 5 0
Slice1 _processing 42 21 66 66 0
Slice2 _processing 42 21 66 66 1
Slice3_processing 42 21 66 66 2
Slice4_processing 42 21 66 66 3

Rebuild_frame 2 1 66 66 66
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Figure 18 Schedule of application tasks using DSF technique.
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it has been particularly distinguished by its efficiency to
reduce CPU power consumption. It can execute various
tasks of an application at different couples of voltage /
frequency depending on the workload of the processor.
Several strategies have been proposed to exploit certain
aspects of DVFS and offer a particular method to build
pseudo intermediate frequencies for use in conjunction
with the techniques of dynamic voltage scaling (DVS) [19].

In this article, we adapt an instance of DVES technique:
the deterministic stretch-to-fit technique (DSF) proposed
in [20], it is based on the slowdown strategy of reducing
the processor power consumption. Slowdown is known
to reduce the dynamic power consumption at the cost of
increased execution time for a given computation task.
It detects early completion of tasks and exploits the pro-
cessor resources to reduce the energy consumption. As
showed in Figure 16, by comparing the actual execution
time (AET) of a task 77 with its worst-case execution
time (WCET) C, (DSF) technique determines the value
of the dynamic slack (¢). This slack time is exploited by
the method to reduce the energy consumed, by stretching
the execution of T, having Cy as WCET, and reduc-
ing the frequency of the processor. t4;, is the available
time at current processor frequency f. t; and ¢, represent,
respectively the activation date of 77 and T5.

The total energy consumed E is calculated as in the
equation below (16)

E= Erunning [fm] + Eidle [fm] +Eos = Z ETi +Eidle [fm]

1<i<n

(16)

Where Erunning[ fin] and Eiqie[ fin] represent respectively
the energy consumed by the processor, at a frequency f,,,
when it is in running and idle mode, # is the number of the
tasks, Eos and E7, are previously presented in Equations
(2) and (4).

In the next section, taking as use case the H.264 appli-
cation, the energy consumption of the OS services will be
determined following the approach described previously.

Experimental results

The H.264 video decoder application is taken as main use
case application. It is a high quality video compression
algorithm relying on several efficient strategies extract-
ing spatial (within a frame) and temporal dependencies
(between frames). This application is characterized by a
flexible coding, high compression and high quality resolu-
tion. Moreover, it is a promising standard for embedded
devices. The main steps of the H.264 decoding process
consist in the following: First, a compressed bit stream
coming from the Network application layer (NAL), which
formats the representation of the video and provides
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header information in a manner appropriate for con-
veyance by particular transport layers, is received at the
input of the decoder. Then, the entropy decoded bloc
begins with decoding the slice header where each slice
consists of one or more 1616 macroblocks, and then
it decodes the other parameters. The decoded data are
entropy and sorted to produce a set of quantized coeffi-
cients. These coefficients are then inverse quantized and
inverse transformed. Thereafter, the data obtained are
added to the predicted data from the previous frames
depending upon the header information. Finally the orig-
inal block is obtained after the de-blocking filter to com-
pensate the block artifacts effect.The H.264 video decoder
application can be broken down into various tasks sets
corresponding to different types of parallelization. In our
experiments, we use the slices version, one of the task
models of H.264 proposed by Thales Group, France [21]
in the context of French national project Pherma [22].

The main characteristic of this version is that the algo-
rithm is parallelized on the slices of the frame as illustrated
in Figure 17 from this diagram; we consider that we have
four types of tasks. First, we start with the NEW _FRAME
tasks (77) that can access only sequentially to the input
data buffer. Therefore, the NAL_DISPATCH task (T>)
which provides access to a shared resource is protected by
a semaphore. Then, SLICE_PROCESSING tasks (T3, Ta,..,
T,) are launched simultaneously. Due to temporal depen-
dencies between frames, it is not possible to compute the
next frame if the previous one has not been completely
decoded. Thus, at the end of each slice computation, tasks
need to be resynchronized using task named SYNC before
running the REBUILD _FRAME (T},41) task.

Hence, H.264 slices version, comprising seven periodic
tasks as shown in Table 3, is used as use case.

Using AADL, the properties of the system architecture,
including the application’s tasks and the hardware plat-
form, are modeled. Then, after performing the code trans-
formation step described in the last section, the execution
of the application tasks are simulated using the STORM
environment. Figure 18 shows the scheduling of the appli-
cation tasks between 1 and 50 ms. We note the stretching
of tasks and then the reduction of energy consumed using
the DSF technique. The OS services energy consumption
rates are presented in Table 4, we note that the con-
text switch is a basic service because the DSF technique

Table 4 OS services energy consumption rates
Energy rate <215i57 215;‘53 ‘si,i)

OS service §;

Context switch 27.2%
Inter-process 3.45%
communication

Scheduling 2%
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performs processor frequency changes. The total energy
consumed by the low power OS services is significant.

Conclusion

We have presented power and energy models of three
basic services of the embedded OS adapting a low power
technique: the scheduling, the context switch and IPC.
These services are chosen to be characterized because
they are stimulated when adapting the DVEFS technique.
The models are based on measurements on the hardware
platform OMAP35x EVM board and allow the charac-
terization of the energy overhead of the low power OS.
Experiments show that these services consume a signif-
icant part of energy. For this reason, we plan, in the
future work, to characterize other basic services of the OS
such as the I/O operations and task management, then to
compare the overhead of the low power OS using DVFS
technique with those using other techniques, for exam-
ple the DPM (Dynamic power management) technique.
The future works of this project will focus on handling the
use of the OS by application tasks to optimize the energy
consumption of the embedded systems.
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