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The ongoing penetration of building automation by information technology is by far not saturated. Today’s systems need not
only be reliable and fault tolerant, they also have to regard energy efficiency and flexibility in the overall consumption. Meeting
the quality and comfort goals in building automation while at the same time optimizing towards energy, carbon footprint and
cost-efficiency requires systems that are able to handle large amounts of information and negotiate system behaviour that resolves
conflicting demands—a decision-making process. In the last years, research has started to focus on bionic principles for designing
new concepts in this area. The information processing principles of the human mind have turned out to be of particular interest
as the mind is capable of processing huge amounts of sensory data and taking adequate decisions for (re-)actions based on these
analysed data. In this paper, we discuss how a bionic approach can solve the upcoming problems of energy optimal systems.
A recently developed model for environment recognition and decision-making processes, which is based on research findings
from different disciplines of brain research is introduced. This model is the foundation for applications in intelligent building
automation that have to deal with information from home and office environments. All of these applications have in common that

they consist of a combination of communicating nodes and have many, partly contradicting goals.

1. Introduction

Over the last decades, automation technology has made
serious progress in observing and control processes in order
to automate them. Prominent examples for research areas
addressing this issue are the discipline of data fusion [1] and
the field of fuzzy control [2]. In factory environments, where
the number of possible occurring situations and states is
limited and usually well known, observation and controlling
of most industrial processes is a tedious, but achievable task.
However, the situation changes if we shift from industrial
to less organized environments like offices or private homes.
Here, the number of possible occurring objects, events, and
scenarios and the ways how to react to them is almost infinite.

Interacting in such real world situations and fulfilling goals
turned out to be a task far from trivial [3, 4]. Existing
approaches are challenged by the abundance of data and the
ways in which it should be analyzed and responded to [5, 6].
The challenge that cannot be met is to find an appropriate
behaviour in the light of multiple, partly contradictory goals.

Building automation is today a network of embedded
systems that are interconnected by standardized fieldbus pro-
tocols. In larger office buildings, some thousand embedded
controllers, sensors, and actuators are installed and take care
of user comfort and safety. The installations in a building
are separated into different industries, which have grown
historically and have no tradition in achieving common
goals together, but only recently started to cooperate. Each



industry prefers to have separate installations rather than
sharing, for example, sensor information between industries.
The control of the HVAC system and the lighting operate
separately without regarding occupancy or sunblinds. Other
information sources like the outside temperature, humidity,
or irradiation are available only for a single industry (if it
is regarded at all). While it is possible to operate a building
in such a way and still maintain a certain level of comfort,
it is impossible to achieve other goals like maximizing energy
efficiency. This is only possible when all industries cooperate,
share information and infrastructure, and can be controlled
in a holistic way.

The next challenge is to find mechanisms to control the
complexity of such an integrated system. When merging all
available subsystems in a building, the number of possible
states rises exponentially and is not manageable with classic
approaches. Instead, the subsystems have to be controlled
by a management system that makes global decisions and
resolves conflicts. Programming in the classical senses, that
is, predefining the behaviour of the system in all possible
situations, is no longer an option, instead, adaptability and
the ability for decision-making is required.

In recent times, research in this field started to focus
on bionic concepts looking at nature as an archetype [7-
11]. Taking these concepts as a basis for the development
of technical systems appears to be a very reasonable idea:
animals and humans have the capability to perceive and
(re-)act on their environment very efficiently [12, 13]. Their
mind reconstructs the environment from the incoming
stream of (often ambiguous) sensory information, generates
unambiguous interpretations of the world on a more abstract
level, evaluates these perceptions, and takes adequate deci-
sions in order to act or react on them. To do so, evolution
has equipped our brains with highly efficient circuits [14].
Deciphering these circuits and mechanisms and translat-
ing them into technically implementable concepts would
without doubt lead to a revolution in machine intelligence
and bring additional economic benefits when applied to
technical systems [15]. Optimizing for energy efficiency is a
task that requires a holistic view of the whole system with
all its border conditions and ambiguous interconnections.
Especially if humans are involved in the system—Iike in
energy optimization for buildings—the description of the
system is already a complex task. An alternative to manual
modelling is required and can be found in the abilities of
the human mind. A key ability is the creation of models
of the real world with the necessary evaluation of objects
and events in this world: when the system has to make
decisions about the control strategy of a building in order
to, for example, minimize energy consumption, it needs
fast evaluations about the building status and the ability of
subcomponents to contribute to reduction of consumption.
Thus not only perception of the current situation is required,
but also an evaluation towards a certain goal. This concept is
the translation of what emotions are in the human mind: fast
evaluations of objects and events in the surrounding world,
which is achieved by multiple levels of processing which
cooperate to create an abstract image of the world focusing
on the relevant information. By exposing an individual to
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many different situations over its lifetime, emotions are built
and refined. The foundation is laid by experiencing situations
that have different impacts on the individual. Some emotions
exist already at an early stage, since they are vital for survival,
some develop at later stages [16—18]. Lab situations as we
use today for training systems are not available in the real
world. It is always an amalgamation of different types of
inputs, where relevant information is embedded into a bulk
of irrelevant information. The challenge lies in identifying
the data that have an impact on the individual. By linking
perception of objects and events with emotions, that is, with
the evaluation of the possible impact, a mechanism is found
that enables us to act and react on complex situations.

Energy management of office, public, and residential
buildings creates such complex situations. The operation of
the building has to be optimized towards different goals: it
shall be energy efficient, with a low carbon footprint, but
also at lowest possible costs. These optimizations have to
be seen in the light of other operational parameters like
maintaining maximum comfort for the users with regard
to temperature, humidity, and lighting. To do so, it has to
regard occupancy of rooms and user behaviour. At the same
time, a building may have different sources of thermal and
electric energy: the electric grid, the thermal grid, and several
sources of renewable energy like solar thermal systems, wind
generation, heat pumps, and photovoltaic systems. Finally,
the building management system should optimize its electric
consumption towards the grid in order to avoid peak loads.
While the necessary hardware and IT infrastructure is today
already in place, there is still a lot of work to be done to find
the right methods for processing the available information
in a way that allows for multigoal optimization and flexible
reaction on unexpected situations. We try to fill this gap with
the bionic approach described in this paper. The enormous
potential of such innovative bionic approaches were taken up
by a research team around Dietmar Dietrich in the year 2000;
an interdisciplinary team of scientists at the ICT (Institute
of Computer Technology), Vienna University of Technology,
works on the development of next generation intelligent
automation systems for building automation, interactive
environments, autonomous agents, and autonomous robots
based on neurocognitive concepts [19-24]. The outcome of
this effort is illustrated in the following in form of a neuro-
cognitive model for environment recognition, decision-
making, and action execution.

2. Neuro-Cognitive Model for
Environment Recognition, Decision Making,
and Action Execution

An overview about the developed model is given in Figure 1.
The model consists of various interconnected modules. The
arrows indicate informational and/or control flows between
the different units. The functionality of the different blocks
of the model and their interaction will be explained step by
step in this section. Starting point for model development
were latest research findings from the disciplines of neuro-
physiology and neuro-psychology about the function of the
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FIGURE 1: Overview of neuro-cognitive model for environment recognition, decisién-making, and action execution.

brain in the process of environment recognition, decision-
making, and action execution.

According to the neuroscientist and psychoanalyst M.
Solms and Turnbull [25], in nature, the purpose of these
processes can be summarized in one phrase: “survival of
the organism”. In order to survive, an individual has to
search for and get the resources its organism currently needs
(food, water, oxygen, sexual partner for reproduction) from
the environment. To do so, it has to be able to recognize
(perceive) its environment and its current bodily needs
(internal states). For this purpose, the body of the individual
is equipped with different sensors (sensory receptors). The
processing of the information coming from these sensors
takes place in the mind of the individual. Based on this
information, it is decided what actions to execute in order
to satisfy the needs of the body. For this purpose, the body
is equipped with a number of actuators to act on the internal
states and the environment.

The architecture of the mind considers two key ideas of
the neuro-cognitive picture. The first is the fact that human
intelligence is based on a mixture of low-level and high-level
mechanisms. Low-level responses are relatively predefined
and may not always be accurate, but they are quick and
provide the system with a basic mode of functioning in terms

of built-in goals and behavioural responses. The second key
idea of the model is the usage of emotions as evaluation
mechanism on all levels of the architecture. By emotions,
the system can learn values along with the information they
acquire.

The four main blocks of the mind are the recognition
module, the predecision module, the decision module, and
the execution module. The recognition module is responsible
for the processing of incoming sensory data in order to
perceive the environment and internal states of the body.
The pre-decision module and the decision module are
responsible for deciding what actions to take based on all
available incoming information. In the pre-decision module,
these mechanisms are based on mainly pre-defined low-
level processes which guarantee a fast reaction in critical
situations. The decision module bases on higher-level mecha-
nisms requiring more time-consuming reasoning processes.
The execution module is responsible for the control of the
actuators in order to correctly execute the selected actions.

In the architecture, there exist several types of memories.
Perceptual memory is used extensively by the recognition
module while processing sensory input data. Perceptual
memory comprises information of how different objects look
like, what sounds they emit, what texture they have, how



they smell, and so forth. A suggestion how to represent
perceptual memory computationally with respect to its
neuro-cognitive basis is given in Section 4. For facilitating
perception and resolving ambiguous perceptual information,
knowledge stored in the semantic memory is needed. It
contains facts and rules about the environment, for example,
what kinds of objects are there, how are they related
to each other, what are the physical rules of the world,
and so forth. In a similar way, semantic memory also
supports the decision making process. Semantic memory is
acquired from episodic memory. Episodic memory consists
of previously experienced episodes. An episode is a sequence
of situations. These episodes have generally been given an
emotional rating and support the decision-making process.
Procedural memory is used in the execution module and
comprises the necessary information for the execution of
routine behaviours. A suggestion for the computational
representation of procedural memory considering its neuro-
cognitive archetype is given in Section 4. Working memory is
conceptualized as active, explicit kind of short-term memory
that supports higher-level cognitive operations by holding
goal-specific information and streamlining the information
flow to the cognitive processes.

The whole decision-making and behaviour selection
process runs as a loop and can be described as follows:
external stimuli originating from the environment are pro-
cessed by the recognition module using knowledge stored
in the perceptual and the semantic memory. The resulting
representation of the current situation is first passed on to
the basic emotions module of the pre-decision unit. From the
recognition module, there are also perceived internal stimuli
from the body to watch over the internal needs of the system
which are represented by internal variables. Each of these
variables manages an essential resource of the system that has
to be kept within a certain range, for example, its energy level.
If one of the internal variables of the recognition module
is about to exceed its limits, it signifies this to the drives
module which in turn raises the intensity of a corresponding
drive, for example, hunger in the case of low energy. There
exists a threshold for hunger. In the case it is passed, the
action tendency to search for food is invoked. In case that
the basic emotions module does not release a competing
action tendency, the decision to search for food is passed on
to the execution unit. The basic emotions module gets its
input from the perception module and the drives module.
It connects stereotype situations with action tendencies that
are appropriate with a high probability. For instance, if an
object is hindering the satisfaction of an active drive, it
will become angry, which leads to “aggressive” behaviour
where the system “impulsively” attempts to remove the
obstacle. For this purpose, it initiates a predefined coping
reaction. Each basic emotion is connected with a specific
kind of behavioural tendency/action like for instance fear
with fleeing (being cautious), disgust with the avoidance
of contact, and playfulness with the exploration of new
situations. An important task of the basic emotions module
is to label the behaviour or action the system has finally
carried out as “good” or “bad” This rating is based on the
perceived consequences (mainly on the internal states) of the

EURASIP Journal on Embedded Systems

executed actions. Successful actions are rewarded with lust;
unsuccessful behaviour leads to avoidance. Through basic
emotions, the system can switch between various modes
of behaviour based on the perception of simple, but still
characteristic external or internal stimuli. This helps to
focus the attention by narrowing the set of possible actions
and the set of possible “perceptions”. The system starts to
actively look for special features of the environment while
suppressing others.

If the pre-decision module does not trigger a response,
perceived situations are handed over to the decision module.
In the decision module, again an emotional rating takes
place—this time by the complex emotions module. Here,
current situations are matched with one or more social
emotions like contempt, shame, compassion, and so forth.
Additionally, current desires influence the decision process.
The decision module heavily interacts with episodic mem-
ory. The episodic memory is searched for situations similar
to the current one including emotional ratings. Furthermore,
the semantic memory can provide factual knowledge of
how to react to a certain situation. If no similar situation
can be found, the planning module (acting-as-if module)
is activated which mentally simulates different responses
to a situation as well as their potential outcomes. After a
final decision how to react to a certain situation has been
taken, the according behaviours/actions have to be carried
out physically. While actions carried out by the pre-decision
unit are of reactive nature with the aim to keep the system
from harm in a dangerous situation, actions coming from
the decision unit are of more complex nature and allocate
more complex patterns from the procedural memory. One
important fact is that the higher-level decisions from the
decision module can inhibit (suppress) the execution of
actions selected by the pre-decision module.

3. Model Implementation and
Use Case Description

In order to do a first verification and evaluation of the
model, it was implemented as a computational simulation
in a virtual environment [6]. In this virtual environment,
autonomous agents are embedded [22, 26-28]. Each of these
autonomous agents has implemented an instance of the
model described in Section 2 as control unit. The agents
can navigate through a three dimensional world. They can
perceive their environment through simplified sense organs.
They can detect the presence of other agents and energy
sources. The set goal of the agents is to survive in the
environment as long as possible. Agents compete in different
groups and try to find an optimum strategy in diverse
(unknown) situations. Therefore, they continuously have to
take decisions about how to (re-)act on the environment.
Starting point for decision making are always both internal
states of the body and external perceptions of the environ-
ment.

One of the use cases for evaluating the model func-
tionality was the so-called cooperation for energy recovery
scenario occurring between two or more agents in the virtual
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environment. This example scenario shall now be explained
in more detail to clarify the concept of decisions-making
according to the model. In the cooperation for energy
recovery scenario, a virtual agent (Agent A) recognizes an
energy source in the environment based on the perceptual
knowledge about the possible appearances of energy sources
stored in his perceptual memory. From the semantic mem-
ory, he retrieves the information that he cannot consume
this energy source alone, but would require the help of other
agents.

In Figure 2(a), the internal states (basic emotions, com-
plex emotions, desires, drives) of Agent A are depicted. The
agent feels hunger. However, he is also afraid because of
the danger connected to approaching this energy source,
which he experienced previously. This event was stored in
his episodic memory. Nevertheless, the hunger is stronger
than the fear. Furthermore, the agent feels the desire to get
food and has the hope that another agent will assist him in
this task. Both the pre-decision and the decision unit are
therefore in accordance and a request of cooperation for
energy recovery is sent to two other agents (Agent B and
Agent C) via the execution module. Both agents receive this
request via their recognition units. Based on their internal
states, they will either make the decision to cooperate for
the purpose of cracking the food source or not. States that
influence this decision are whether the agents feel hunger
themselves, whether they feel a need for social interaction,
whether they feel fear, and so forth. In Figures 2(b) and 2(c),
the internal states of Agent B and Agent C are shown at the
moment they receive Agent A’s request. The internal states of
Agent B show a high level of fear and moderate levels of pride
and reproach due to the fact that he does not want to admit
his fear and is afraid to get blamed for not helping. Therefore,
although he feels the drive to care about Agent A and the
desire of socially interactting with him, the basic emotion
of fear overrules all other internal states and the request of
Agent A is rejected. Agent C in contrast shows a high level of
lust, a low level of fear, and a high level of hope to become
friend with Agent A and socially interact with him in future
in case of supporting him. Although his hunger level and
his desire for getting food are only low, he therefore answers
Agent A’s request positively.

4. Neurosymbolic Intelligence

The model introduced in Section2 presents a general
framework for environment recognition, decision-making,
and action execution in automation systems based on
neuro-congitive insights about the human brain. The first
simulation and validation of this framework was presented
in Section 3. In this simulation, the different modules were
implemented in a rule-based form (hard-coded rules and
fuzzy rules) in order to determine output data based on
incoming data. In further development steps, it was then
aimed to substitute these rules by approaches that are
closer to the neurophysiological and neuropsychological
information processing principles of the brain. The result
of this research effort was the elaboration of the so-called

neurosymbolic information processing principle [3]. The first
module to which this method was applied was the recogni-
tion module [29]. In later steps, it was also attempted to apply
this mechanisms to the action execution module and for the
representation of emotions, drives, and desires. An overview
of the neuro-symbolic principle is given in the following with
focuses on the recognition system and further remarks on the
application to other areas.

4.1. Neuro-Symbolic Recognition. In Figure 3, an overview is
given about the neuro-symbolic recognition model. Recog-
nition, also referred to as perception, always starts with
sensor values. These sensor data is processed in a neuro-
symbolic network, which comprises the perceptual memory,
and results in the perception of what is going on in the
environment. The perception process is assisted by semantic
memory and provides output information to the episodic
memory and the decision-making modules. The neuro-
symbolic network is the central element of the model and
is concerned with the so-called neuro-symbolic information
processing. Due to length constraints of this paper we will
focus only on the description of this module.

The basic information processing units of the neuro-
symbolic network are so-called neuro-symbols. To use
neuro-symbols as elementary information processing units
came from the following observation: in the brain, infor-
mation is processed by neurons. However, humans do not
think in terms of firing nerve cells but in terms of symbols.
In perception, these symbols are perceptual images like a
face, a person, a melody, a voice, and so forth. Neural and
symbolic information processing can be seen as information
processing in the brain on two different levels of abstraction.
Nevertheless, there seems to exist a correlation between
these two levels. Actually, there have been found neurons
in the brain which react for instance exclusively if a face is
perceived in the environment [30-32]. This fact can be seen
as evidence for such a correlation and was the motivation for
using neuro-symbols as basic information processing units.
Neuro-symbols show certain characteristics of neurons and
others of symbols. Analyses of structures in the human mind
have shown that certain characteristics and mechanisms
are repeated on different levels, for example, afference and
efference. This repetition of characteristics is a key element
to the concept of neuro-symbolic processing.

In perception, neuro-symbols represent perceptual
images—symbolic information—like persons, faces, voices,
melodies, textures, odours, and so forth. Each neuro-symbol
has an activation degree. This activation degree indicates
whether the perceptual image it represents is currently
present in the environment. Neuro-symbols have several
inputs and one output. Via the inputs, information about
the activation degree of other neuro-symbols is collected.
These activation degrees are then summed up and result in
the activation degree of the particular neuro-symbol. If this
sum exceeds a certain threshold value, the neuro-symbol is
activated and information about its own activation degree is
transmitted via the output to other neuro-symbols. Neuro-
symbols can process information that comes in concurrently,
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within a certain time window, or in a certain succession.
Additionally, neuro-symbols can have so-called properties,
which specify them in more detail. One important example
for such a property is the location of the perceptual images
in the environment.

To perform complex tasks, neuro-symbols are combined
and structured to neuro-symbolic networks. As archetype for
this neuro-symbolic architecture, the structural organization
of the perceptual system of the human brain as described
by Luria [32] is taken. According to Luria, the starting
point for perception are the sensory receptors of different
modalities (visual, acoustic, somatosensory, gustatory, and
olfactory perception). The information from these receptors
is then processed in three hierarchical levels. In the first two
levels, the information of each sensory modality is processed
separately and in parallel. In the third one, the information of
all sensory modalities is merged and results in a multimodal
(modality neutral) perception of the environment. In the
first level, simple features are extracted from the incoming
sensory data. In the first level of the visual system, neurons
fire to features like edges, lines, colours, movements of a
certain velocity and into a certain direction, and so forth.
In the second level, a combination of extracted features
results in a quite complex representation of all aspects of
the particular perceptual modality. In the visual system,
perceptual images like faces, a person, or other objects are
perceived at this level. On the highest level, the perceptual
aspects of all modalities are merged. An example would be to
perceive the visual shape of a person, a voice, and a certain
odour and conclude that all this information belongs to a
particular person currently talking.

In analogy to this modular hierarchical structure of the
perceptual system of the human brain, neuro-symbols are
structured to neuro-symbolic networks (see Figure 4). Also
here, sensor data are the starting point for perception. These
input data are processed in different hierarchical levels to
more and more complex neuro-symbolic information until
they result in a multimodal perception of the environment.
Neuro-symbols of different hierarchical levels are labelled
differently according to their function. Neuro-symbols of
the first level are called feature neuro-symbols, neuro-
symbols of the next two layers are labelled subunimodal
and unimodal neuro-symbols, and the neuro-symbols of
the highest levels are referred to as multimodal neuro-
symbols and scenario neuro-symbols. Neuro-symbols of
one level present the symbol alphabet for the next higher
level. Each neuro-symbol of the higher level is activated

by a certain combination of neuro-symbols of the level
below. Concerning the sensor modalities, there can be used
sensors, which have an analogy in human sensory perception
like video cameras for visual perception, microphones for
acoustic perception, tactile sensors for tactile perception,
and chemical sensors for olfactory perception. Furthermore,
there can be used sensors, which have no analogy in the
human senses like the perception of electricity or magnetism.
What sensor data trigger which neuro-symbols and what
lower-level neuro-symbols activate what neuro-symbols of
the next higher level is defined by the connections between
them. There exist forward connections as well as feedback
connections. These connections are no fixed structures,
but they can be learned from examples [15]. Learning
allows great flexibility and adaptation of the system, because
learning is a process that involves all levels of the network.
In the current approach, learning is intended to modify the
connections between neuro-symbols, but future approaches
will also change the structure of the network itself, thus
allowing increased flexibility and creation of new neuro-
symbols.

4.2. Neuro-Symbolic Implementation and Use Case Descrip-
tion. To verify the concepts of neuro-symbolic recognition,
it was applied to a building automation environment. In
concrete, the test environment was the office kitchen of
the Institute of Computer Technology (ICT) at the Vienna
University of Technology [33, 34]. The kitchen comprises
a table with eight chairs and a kitchen cabinet including
a stove, a sink, a dishwasher, and a coffee machine. For
testing the recognition model, the kitchen was equipped
with sensors of different types: tactile floor sensors, motion
detectors, door contact sensors, window contacts, light
barriers, temperature sensors, a humidity sensor, brightness
sensors, a microphone, and a camera. From these sensor
data, different scenarios had to be perceived following the
information processing principles proposed in Section 4.1.
As by these measures, the kitchen became an “intelligent”
system capable of autonomously perceiving what is going on
in it, it got the name Smart Kitchen.

In Figure 5, the neuro-symbol hierarchy for the detection
of the three most typical events occurring in the kitchen
during working hours is presented: “prepare coffee”, “kitchen
party”, and “meeting”. It is shown how level-by-level more
and more meaningful and interpretable neuro-symbols are
generated from partly redundant sensor data until they
result in an activation of the neuro-symbols “prepare coffee”,
“kitchen party”, and “meeting”. The redundancy in sensor
data allows a certain level of fault tolerance in detection. An
activation of a neuro-symbol of the highest level indicates
that the event it represents has been perceived in the
kitchen.

The event “prepare coffee” is the situation occurring
most often in the kitchen and represents the activity that
one or more of the employees come(s) into the kitchen,
operate(s) the coffee machine, and leave(s) the kitchen
again. The detection of this scenario is based on data
from the video camera, the microphone, the tactile floor
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sensors, and the motion detectors. From the floor sensors
and motion detectors, it is perceived where in the room a
dynamic (moving) object is present. Together with an image
processing algorithm analyzing the video data, it is concluded
where in the room a person is present. The information
from these sensors is partly redundant, which makes the
perception more robust. In case a person is perceived close
to the coffee machine and the acoustic noise emitted by
the coffee machine is detected, the neuro-symbol “prepare
coffee” is activated.

The “kitchen party” scenario generically describes a get-
together of a number of people in the kitchen for an informal
gathering, usually accompanied by food and drinks. Such
informal gatherings benefit social networking and the quick
exchange of ideas. This scenario is detected from the same
sensor types like the “prepare coffee” event. However, in this
case, there have to be detected two or more persons based
on video data and data from the tactile floor sensors and
motion detectors. Additionally, food and drinks on the table
have to be identified from the video data and voices from the
microphone.

The “meeting” scenario describes a formal get-together
for working purposes. It is usually characterized by a number
of people that are seated regularly around the table. They
have papers or laptops to read and tools to write with them.
The number of people talking at the same time is smaller
and the overall noise level is lower than in the kitchen party
scenario.

The information about perceived scenarios from the
recognition module is constantly passed to the decision
units. Depending on which event occurs, there are different
requirements concerning lighting and heating or cooling.
Based on the perceived event and additional sensor infor-
mation about current temperature, brightness level, position
of the sunblinds, and the window status (open/closed), a
decision is taken of how to regulate heating, air conditioning,
lighting, the position of the sunblinds, and so forth. For
the “prepare coffee” scenario, for instance, standard lighting
conditions are provided (main light switched on) in case
that the outside light is not sufficient. No special adaptations
are made in heating or cooling as the person(s) are present
in the room only for a few minutes, which is below the
time constant of the heating and air conditioning system.
Also the “kitchen party” event does not require particular
adjustments in lighting. However, while the “prepare coffee”
scenario is a spontaneous event the “kitchen party” can be
scheduled in advance, since the facility management has
access to the room schedule. This is important, because
the cooling or heating load is considerable and requires
preparation of the room climate. Such a scenario generally
lasts about 30 minutes, the impact of (human) heat load
depends amongst other factors on the current inside and
outside temperature. In the “meeting” scenario, lighting
needs special adaptation. In case that the outside light
is not sufficient, a light above the table is switched on
additionally to the main light. If laptops are used and direct
sunlight shines on the screens, the sunblinds are shut down.
Adaptation in heating or air conditioning are made in a
similar way like for the “kitchen party” scenario.

The Smart Kitchen is a good example for complex
interactions between different subsystems that operate in a
building or room, respectively. To achieve maximum energy
efficiency, the system needs to know about room occupancy.
Lighting conditions have to be adapted by electric light
and sunblinds depending on outside light conditions and
on the activity of the user, for example, when operating
the coffee machine, reading journals that are on display in
the kitchen, holding a meeting, or coming together for an
informal break. The room climate has to be maintained, but
only upon occupancy. Since the climate has much longer
reaction times than, for example, lighting, the system has
to either predict usage [35] or keep climate permanently
at comfort level-which is not energy efficient. Instead the
system has to operate the room in comfort mode (if it is
occupied) or in pre-comfort mode (if unoccupied). In pre-
comfort mode, the room can be operated in more relaxed
conditions regarding temperature and humidity. This degree
of freedom again allows for flexibility in usage of renewable
energy sources and cost optimization (e.g., by cooling the
room in summer at times when energy from the grid is cheap
or when renewable energy is available). Lighting conditions
are extremely critical, since human users react sensibly on
changes, so the amount of changes has to be kept at a
minimum. Furthermore, there is no common lighting level
for a room, but it strongly depends on the geometry and
obstacles in the room as well as the lighting installation in
the room. To maintain a high level of comfort while at the
same time optimizing for all other goals (energy efficiency,
costs, usage of renewable) is a most challenging task that can
be approached satisfactorily by the presented model

4.3. Further Neuro-Symbolic Representations. Similar to the
recognition module of the model depicted in Figure 1,
the neuro-symbolic information representation and infor-
mation processing principle can also be applied to the
action execution unit for the representation of procedural
memory. As described by Goldstein [30], like the perceptual
system, also the motor cortex, which is responsible for
action planning and action execution, is organized in a
modular hierarchical manner. In contrast to the recognition
unit, in the action execution unit, the information flow is
directed top-down from higher to lower levels. Unlike for the
recognition unit, where neuro-symbols receive information
from various sources and are only activated if their activation
degree exceeds a certain threshold, motor neuro-symbols
work the other way around. They have the task to distribute
information about a planned action to various sources
and therefore activate various neuro-symbols of the next
lower level. At the highest level, neuro-symbols represent
whole action plans as reaction to a certain situation. Based
on this, at the level below, there are activated neuro-
symbols in a certain sequence representing different sub-
tasks of this action plan. From layer to layer, these action
commands become more and more detailed until the last
layer comprises neuro-symbols that directly result in the
activation of certain muscles and muscle groups in a certain
sequence. In technical systems, these muscle activations can
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be substituted by the activation of certain actuators or the
triggering of alerts. Again, neuro-symbols of a lower level are
the symbol alphabet of the level above and therefore allow a
flexible reuse of defined structures.

Besides recognition and action performance, neuro-
symbols can also serve for the representation of emotions
as used in the pre-decision and the decision module of
Figure 1. In this case, neuro-symbols represent emotional
states like lust, anger, panic, fear, hope, pride, and so
forth. The activation of these neuro-symbols is triggered
from sensory receptors perceiving the internal states of
the body, from neuro-symbols of the recognition unit, or
from higher cognitive activities. Further details concerning
the representation of emotions via neuro-symbols and the
structure of such neuro-symbolic networks have already been
discussed in [25].

A similar representation for emotions might also be
conceivable for drives and desires. Apart from this, it would
be interesting to face in a next step the possibility to represent
also other types of memory (episodic memory, semantic
memory, and working memory) by the neuro-symbolic cod-
ing scheme and to investigate how the interaction between all
these different neuro-sybmolic representations works in the
process of decision making.

5. Conclusion

In this paper, the issue of maintaining quality and comfort
goals in building automation while at the same time optimiz-
ing towards energy efficiency was addressed by presenting a
bionic model for environment recognition, decision making,
and action execution. The model incorporates concepts like
emotions, drives, desires, perceptual memory, procedural
memory, episodic memory, and semantic memory and
provides significant schematical and analytical insights into
processes taking place in the mind; this has been unseen so
far in its clarity. By these mechanisms, it becomes possible to
handle large amounts of information and negotiate a system
behaviour that resolves conflicting demands. In this sense,
the presented model is a first step towards a future generation
of truly “intelligent” automation systems.
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