
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2011, Article ID 270908, 13 pages
doi:10.1155/2011/270908

Research Article

ADVP-Based Bridge Architecture to Randomly Access Pixels of
High-Speed Image Sensors

Tareq Hasan Khan and Khan A.Wahid

Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK,
Canada S7N 5A9

Correspondence should be addressed to Tareq Hasan Khan, tareq 992403@yahoo.com

Received 14 October 2010; Revised 3 January 2011; Accepted 17 January 2011

Academic Editor: Sandro Bartolini

Copyright © 2011 T. H. Khan and K. A. Wahid. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A design of a novel bridge is proposed to interface digital-video-port (DVP) compatible image sensors with popular micro-
controllers. Most commercially available CMOS image sensors send image data at high speed and in a row-by-row fashion. On the
other hand, commercial microcontrollers run at relatively slower speed, and many embedded system applications need random
access of pixel values. Moreover, commercial microcontrollers may not have sufficient internal memory to store a complete image
of high resolution. The proposed bridge addresses these problems and provides an easy-to-use and compact way to interface image
sensors with microcontrollers. The proposed design is verified in FPGA and later implemented using CMOS 0.18 um Artisan
library cells. The design costs 4,735 gates and 0.12mm2 silicon area. The synthesis results show that the bridge can support a data
rate up to 254megasamples/sec. Its applications may include pattern recognition, robotic vision, tracking system, and medical
imaging.

1. Introduction

In recent years, image sensors have increased in quality and
capability and at the same time decreased in price, making
them desirous to include in small electronic devices and sys-
tems. However, these image sensors are difficult to interface
with most commercial microcontrollers (MCUs) as these
high-speed image sensors produce data at such a high rate
that cannot be processed in real time. As a consequence, most
high-speed image sensors are difficult to use in low-power
and low-speed embedded systems. There is no buffering
provided inside the image sensors. Most MCUs have limited
internal memory space and may not be able to store a com-
plete frame unless external memory is provided. Moreover,
these image sensors send image data in a row-by-row fashion;
as a result, the data cannot be accessed randomly; the first
row must be read prior to the second row to avoid data loss.
Many image processing algorithms, such as transform coding
using the Discrete Cosine Transform (DCT) and pattern
recognition for robotic vision, need to access pixel values in a

random access fashion. Besides, a high-speed clock must be
provided to operate the image sensors properly.

In order to overcome these difficulties, researchers in the
past have proposed application-specific design of image sen-
sors with control circuitry and dedicated memory embedded
on the same chip, as shown in Figure 1(a). Such sensors are
dedicated to particular application and cannot be used for
general purpose. In this paper, we present a digital-video-
port (DVP) compatible bridge architecture that will “bridge”
any general-purpose image sensor with the image processor
as shown in Figure 1(b). In this work, our target is the low-
speed and low-power MCU that is realized here as the image
processor. The proposed bridge aims to overcome the speed
gap between the commercially available image sensors and
MCUs. By using the bridge hardware, the image processor
can easily initialize any DVP-compatible image sensor and
capture image frames. The captured pixel values are then
accessed by the image processor at a random fashion through
a parallel memory access interface at a desired speed for
further processing. The proposed design is synthesized and



2 EURASIP Journal on Embedded Systems

Image sensor
(dedicated)

Image
processor
(general)

Control
circuitry

Memory
(fixed)

Image
sensor

(general) Proposed bridge
hardware

Control
circuitry

Memory
(variable)

Image
processor
(general)

Figure 1: Image processor connected with (a) application-specific
image sensor and (b) general-purpose image sensor via the
proposed bridge.

tested in commercial FPGA board, where the maximum
speed achieved is 248MHz. The VLSI design using standard
0.18 um CMOS Artisan library cells is also presented. The
bridge can be used in various embedded system applications
including pattern recognition, robotic vision, biomedical
imaging, tracking system, where random access of image
pixels is required.

It should be noted that the commercial high-speed
image sensors may be interfaced with more advanced MCUs
(such as AT91CAP7E, AT91SAM7S512 from Atmel [1]).
However, these microcontrollers contain many additional
features (such as six-layer advanced high-speed bus (AHB),
peripheral DMA controller, USB 2.0 full-speed device, and
configurable FPGA Interface) that may not be required for
simple imaging applications. Besides, programming such
microcontrollers and implementing the required protocols
increase the design cycle time. The purpose of the proposed
bridge hardware is to provide a compact, ready-made, and
easy-to-use solution that enables interfacing of commercial
general-purpose image sensors with simple microcontrollers
that are low-cost and easy-to-program (such as 8051 [2, 3],
AVR [4], and PIC [5]). Thus the bridge hardware helps to
shorten the design/development cycle time and facilitates
rapid system level prototyping.

2. Background

In [6–10], presented are some VLSI designs on CMOS
image sensors with random access. In [11, 12], the authors
have presented two different designs of a random access
image sensor based on a data-address bus structure. The
work in [13] presents a low-power full-custom CMOS
digital pixel sensor array designed for a wireless endoscopy
capsule [14]. The proposed architecture reduces the on-
chip memory requirement by sharing pixel-level memory
in the sensor array with the digital image processor. A
dental digital radiographic (DDR) system using a high-
resolution charge-coupled device (CCD) imaging sensor was
developed and its performance for dental clinic imaging was
evaluated in [15]. The work in [16] presents a novel smart
CMOS image sensor integrating hot pixel correcting readout

circuit to preserve the quality of the captured images for
biomedical applications. In [17], an image sensor with an
image compression feature using the 4× 4 DCT is presented.
In [18], a CMOS image sensor has been designed to perform
the front-end image decomposition in a Prediction-SPIHT
image compression scheme. In [19], an image sensor unit
with sensor to detect the gravity direction and a built-in
image rotation algorithm is presented. The system rotates the
captured image in the direction of gravity for better viewing
that can be used in rescue robots. The paper in [20] discusses
a range image sensor using a multispot laser projector for
robotic applications. In [21], a pointing device using the
motion detection algorithm and its system architecture is
presented. The proposed motion detection pointing device
uses just binary images of the binary CMOS image sensor
(BCIS). In [22], a smart image sensor for real-time and
high-resolution three-dimensional (3D) measurement to be
used for sheet light projection is presented. A facial image
recognition system based on 3D real-time facial imaging
by using correlation image sensor is discussed in [23].
The differential geometry theory was employed to find the
key points of face image. A design of an image sensor
focusing on image identification by adjusting the brightness
is presented in [24]. It has GPRS connectivity and can
be used in vehicle surveillance system. In [25], a single-
chip image sensor for mobile applications realized in a
standard 0.35 um CMOS technology is presented. In [26], a
solution to reduce the computational complexity of image
processing by performing some low-level computations on
the sensor focal plane is presented. An autonomous image
sensor for real-time target detection and tracking is presented
in [27]. In [28], the authors describe and analyse a novel
CMOS pixel for high-speed, low-light imaging applications.
An 8.3-M-pixel digital-output CMOS active pixel image
sensor (APS) for ultra-definition TV (UDTV) application is
discussed in [29]. In [30], a hardware accelerator for image
reconstruction in digital holographic imaging is presented
that focuses to maximize the computational efficiency and
minimize the memory transfer overhead to the external
SDRAM.

There are some commercial image sensors such as
MT9V011 from Aptina [31] and OVM7690 from OmniVi-
sion [32] that support partial access of image segments
known as “windowing”. By configuring the control resisters,
the top-left and bottom-right corners of the desired area can
be specified. The image sensor then captures and sends an
image of the specified rectangle. However, it is not possible
to access (and capture) other segments of the same frame
with this feature which is required in several image coding
applications such as transform coding. There are two more
disadvantages of such approach: firstly, the internal control
registers need to be reconfigured every time an image capture
request is sent, which is an extra overhead; secondly, because
of the time taken for this reconfiguration, the sensor will
capture a frame that is different in the time instant. Besides,
the “windowing” is limited to rectangles only; the image data
cannot be accessed in any other shapes.

In summary, the works mentioned above discuss differ-
ent designs of image sensors targeted to specific application;



EURASIP Journal on Embedded Systems 3

however, they are not available for general-purpose use. In
this paper, we present a novel concept—the design of a
bridge architecture that connects the commercial MCUs to
any commercial DVP-based general-purpose image sensors.
The bridge needs to be configured once with a set of
addresses (provided by the manufacture as found in the
datasheet) in order to communicate with the image sensor,
which makes the design universal and for general-purpose
use.

3. Design Objectives

Considering the application types (i.e., robotics vision,
imaging, video, etc.) and availability of commercial micro-
controllers (MCUs), in this work, we have set the following
design objectives to facilitate the interfacing of high-speed
image sensors with low-performance MCU.

(i) The bridge hardware should operate at very high
speed (over 200MHz) so that the image pixels can
be accessed in real time through high-speed image
sensors. As a result, the MCUs (or image processor)
using the bridge need not be high performance and
high speed.

(ii) The bridge should contain sufficient memory space
to store image frames of different resolutions, such
as CIF, QVGA, VGA, full HD, and UHDV. Thus,
an MCU with limited on-chip memory may be able
to access image pixels from the buffer memory of
the bridge at the desired speed. Moreover, because
of the memory buffer, any image segments of the
same frame can be accessed without having to
reconfigure the image sensor, which is required in
many video coding applications. An example of such
application is the Discrete Cosine Transform-based
image coding, where several 8 × 8 blocks of image
segments of the same frame are required.

(iii) The bridge should provide an efficient way to access
the image pixels randomly. A more convenient way is
to access the 2D pixel arrays using parallel interfacing
with row and column positions. This will be a
significant improvement over the designs with typical
data-address structure [11, 12].

(iv) The usage of the bridge should be robust. As a
result, it should provide efficient and easy ways to
access image pixels in virtually any shapes, such as
rectangles, circles, oval, and points. This facilitates
fully random access in any random shapes.

(v) Commercial image sensors from different vendors
have unique device parameters along with internal
control registers for proper configuration (such as,
to configure frame size, colour, and sleep mode).
The bridge should be able to communicate with
most available image sensors. As a result, the design
should be universal so that it can be configured at
the beginning with the proper set of parameters for
a particular image sensor.

CMOS image
sensor

VD

HD

DCLK

DOUT(7:0)

STROBE

GPIO

EXTCLK

RESET

PWDN

SCL

SDA

TEST

Figure 2: DVP interface pins of an image sensor.

(vi) Commercial image sensors use I2C protocol and
DVP interfacing. Hence, the desired bridge hardware
must have I2C protocol already configured as well as
support DVP interfacing.

(vii) Most commercial image sensors require high-speed
external clock for its operation. It is desirable that
the bridge supplies that clock so that the clock can
be efficiently controlled during operation (i.e., full
clock rate during regular operation, reduced rate
during sleep or inactivity, etc.). At the same time,
the bridge should be able to detect any inactivity and
automatically enable the sleep mode of the image
sensor—this will result in power savings.

4. The DVP Interface

Most leading commercial CMOS image sensors, both
standard-definition (SD) and high-definition (HD), send
image data using a common standard interface, known as
the DVP interface. The common I/O pins of a typical CMOS
image sensor are shown in Figure 2.

The VD (or VSYNC) and HD (or HSYNC) pins indicate
the end of frame and end of row, respectively. Pixel data
bytes are available for sampling at the DOUT(0 : 7) bus at
the positive edge of the DCLK signal. The EXTCLK is the
clock input for the image sensor. The frequency of DCLK is
half or quarter of the frequency of EXTCLK depending on
the configuration of the image sensor. The initialization and
configuration of the image sensor is done by the 2-wire (SCL
and SDA) I2C protocol. In the context of image sensor, it is
often called as Serial Camera Control Bus (SCCB) interface
[32]. The frame size, colour, sleep mode, and wake up mode
can be controlled by sending I2C commands to the image
sensor. The RESET is an active low reset signal for the image
sensor. Some image sensors have a pin (PWDN) to control
the active-sleep mode. Some HD image sensors may contain
additional control pins (as shown as dotted line in Figure 2),
which are used in special modes; however, these extra pins
may be tied to VDD or GND or left unconnected in normal
operation.

4.1. Standard-Definition (SD) CMOS Image Sensors. The
DVP interface is widely used in most commercially available



4 EURASIP Journal on Embedded Systems

Random access memory

Memory
addressing
and control

Read address
generator

Image data module

I2C interface
Sensor
control

I2C CLK

Clock
generator

Configure module

iBRIDGE

VD

HD
DOUT (9:0)

RESET

SCL

SDA

EXTCLK

DCLK

PWDN

Im
ag

e
se

n
so

r
in

te
rf

ac
e

Data(9:0)

FrameReceived

CfgWr

Init

ReqFrame

RST

Crystal

Im
ag

e
pr

oc
es

so
r

in
te

rf
ac

e

Col(9:0)/
CfgAdr(3:0)

Row(8:0)/
CfgData(7:0)

ByteIndex(1:0)

Figure 3: Block diagram of the iBRIDGE.

SD CMOS image sensors, such as TCM8230MD from
Toshiba [33], OVM7690 from OmniVision [32], MT9V011
from Aptina [31], LM9618 from National [34], KAC-9630
from Kodak [35], and PO6030K from Pixelplus [36].

4.2. High-Definition (HD) CMOS Image Sensors. Most native
HD (720p and 1080p) image sensors such as OV10131 from
OmniVision [32] and MT9P401 from Aptina [31] use the
DVP interface. Some higher-resolution HD image sensors
such as OV9810 [32] use an additional interface, called
the mobile industry processor interface (MIPI) along with
the typical DVP interface. The data output bus DOUT is
generally wider than 8 bits in these HD image sensors.

5. The iBRIDGE Architecture

The proposed bridge (referred as iBRIDGE from now) is
placed in between the image sensor and the image processor
or the microcontroller. Figure 3 shows the interfacing of the
iBRIDGE and its internal blocks. The pins on the left hand
side are to be connected with an image sensor while those
on the right hand side are to be connected to the image
processor (or the MCU). There are two types of signals
coming from the Image Processor Interface: configuration
signals (CfgWr, Init, ReqFrame, and RST) and frame access
signals (Data, Col, Row, etc.). The configuration signals are
asynchronous in nature whereas the frame access signals
depend on the speed of the image processor requesting the
“access”; hence these incoming signals do not need to be
synchronized with iBRIDGE’s internal clock.

5.1. Configuring the iBRIDGE. The operation starts by first
configuring the iBRIDGE’s internal registers with a set of

Table 1: Configuration register mapping.

CfgAdr(3 : 0) CfgData(7 : 0) CfgAdr(3 : 0) CfgData(7 : 0)

0000 Device ID 1000 Cmd2 Reg. Adr.

0001 Total Cmd. 1001 Cmd2 Reg. Data

0010 Sleep Reg. Adr. 1010 Cmd3 Reg. Adr.

0011 Sleep Reg. Data 1011 Cmd3 Reg. Data

0100 Wake Reg. Adr. 1100 Cmd4 Reg. Adr.

0101 Wake Reg. Data 1101 Cmd4 Reg. Data

0110 Cmd1 Reg. Adr. 1110 ImageWidth/4

0111 Cmd1 Reg. Data 1111 Bytes-per-pixel

predefined addresses so that it can properly communicate
with the image sensor. Image sensors of different manufac-
tures have different device ID (or slave address) which is
used for such communication using the I2C protocol [37].
The image sensors also have internal control registers used
to configure the functionality, such as frame size, colour,
and sleep mode, and so forth. These registers are controlled
by I2C protocol. The register mapping is also different
for different manufacturers; so, the iBRIDGE needs to be
configured as well with the proper configuration mapping
of the image sensor (found on the datasheet). Table 1 shows
the configuration registers implemented inside the iBRIDGE
that are required in normal operation. The table may be
extended to accommodate additional special features. The
content of these registers can be modified by twomultiplexed
input ports: CfgAdr(3 : 0) and CfgData(7 : 0). In order to
write to a register of iBRIDGE, the register address is placed
on CfgAdr(3 : 0) bus, the data on CfgData(7 : 0) bus, and



EURASIP Journal on Embedded Systems 5

Table 2: Data and blank bytes sent by Toshiba image sensor.

Image size Init BlankBytes PixelBytes/Row (RGB) BlankBytes/Row TotalRow n

SubQCIF 157 256 1304 254 2

QQVGA 157 320 1240 254 2

QVGA 157 640 920 254 2

VGA 157 1280 280 507 1

the CfgWr pin is asserted high. Thus, the iBRIDGE can
be configured for any DVP-compatible image sensor which
makes it universal.

5.2. Operation of the iBRIDGE. An external crystal needs to
be connected with the iBRIDGE to generate the necessary
clock signals. The frequency of the crystal should be the
required EXTCLK frequency of the image sensor. In order
to capture one frame, at first image processor asserts the
RST pin to high and then makes it low. The image capturing
process can be started by asserting the Init pin to high. The
image sensor will set the frame size and colour according to
the information provided in the configuration registers and
then image data will began to store in the bridge’s memory
block. During the image capturing process, Data(9 : 0) goes
to high-impedance state. As soon as the image capturing
process is completed, the FrameReceived pin goes from low
to high. At this time, the image sensor is taken to sleep mode
to save power. The Col(9 : 0), Row(8 : 0), and ByteIndex(1 : 0)
buses are then used by the image processor to access any pixel
of the frame from iBRIDGE’s RAM at the desired speed and
in a random access fashion. After placing the column and
row value on the Col(9 : 0) and Row(8 : 0) bus, the data (pixel
value) of that particular location of the frame appears on the
Data(9 : 0) bus after a certain time delay, called Taccess, which
is given by (1). Note that, for an SD image sensor, only the
lower 8 bits (Data(7 : 0)) are used:

Taccess = Tcal adr + Tmem, (1)

where Tcal adr is the time required to calculate the physical
memory address from column and row positions and Tmem

is the access time of the memory. The typical value of
Taccess is 35 nanosecs for the current design constraints. If the
image has more than one bytes-per-pixel (such as RGB888,
RGB565, and YUV422), then the other consecutive bytes
can be accessed by placing the offset on the ByteIndex(1 : 0)
bus. After the desired pixel values are read, the process of
capturing the next frame with the same configuration can be
repeated by asserting ReqFrame pin from low to high. Most
image sensors send some invalid blank bytes and invalid rows
while capturing a frame. The time needed to capture a frame,
TReq-Recieved, and the maximum frame-rate, FPSiBRIDGE, can
be calculated from the following:

FPSiBRIDGE = 1
TReq-Recieved

, (2)

where

TReq-Recieved = TWakeup + TFrameStore, (3)

TWakeup = I2C WriteCommandBits× 1
fSCL

= 30× 1
400KHz

= 75× 10−6 sec,

TFrameStore =
[
InitBlankBytes +

(
PixelBytes

Row
+
BlankBytes

Row

)

× TotalRow
]
× n

fDCLK
,

(4)

where TWakeup is the time required for the image sensor to
wake up from sleep mode, TFrameStore is the time required
to store a complete frame in memory from the image
sensor, I2C WriteCommandBits is the required number of
bits that need to be sent to write in the image sensor’s
internal registers, fSCL is the frequency of the SCL pin of the
I2C interface, InitBlankBytes is the number of blank bytes
sent by the image sensor at the beginning of a new frame,
PixelBytes/Row is the number of pixel bytes sent by the
image sensor for one row, BlankBytes/Row is the number of
blank bytes sent by the image sensor for one row, TotalRow
is the number of rows sent by the image sensor for one frame,
and n is a constant for dividing the frequency of DCLK.

The maximum FPS achieved by an image processor or
microcontroller can be calculated using the following:

Tprocessing = Tmem access + Talgorithm,

Tmem access = N × BPP× CPI× 1
fmcu

,

FPSmax = 1
TReq-Received + Tprocessing

,

(5)

where Tmem access is the time needed to access the required
pixel bytes from the iBRIDGE’s memory, Talgorithm is the time
required for implementing any desired image processing
algorithm by the image processor, N is the number of
random pixels that need to be accessed (in the worst case,
Nmax = W × H , where W and H are image width and
height, namely), BPP is the number of bytes per pixel, CPI
is the number of clock cycle required by the image processor
to read a byte from iBRIDGE’s memory, and fmcu is the
frequency of the image processor’s clock.

Table 2 shows the above mentioned parameters for a
Toshiba image sensor [33]. Similar table can be extracted



6 EURASIP Journal on Embedded Systems

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

VALID

RST

CfgAdr
[3:0]

CfgData
[7:0]
CfgWr

Init

Frame
Received

Col[9:0]

Row[8:0]

ByteIndex
[1:0]

Data[9:0]

Req
Frame

TReq-Recieive (init) Tprocessing TReq-Receive Tprocessing

t1

t1

t1

Sensor power
Status Active Sleep Active Sleep

Figure 4: Operational timing diagram of the iBRIDGE.

for other image sensors from the respective datasheets. The
timing diagram of the overall operation of the iBRIDGE
is shown in Figure 4 (here, t1 = 1.25 microseconds to
2.5microseconds, i.e., equal to at least one I2C CLK).

The iBRIDGE is also compatible with the HD image
sensors that use the parallel DVP interface. The procedure to
configure the iBRIDGE is similar to that of the SD sensors
as discussed above; however, a full-precision Data(9:0) is
used to access the pixel data. The following sections describe
briefly the internal architecture of the iBRIDGE.

5.3. Sensor Control. This block is used to configure and
control different modes of the image sensor. After the Init
signal is received, it generates the RESET signal for the image
sensor and then waits for 2000 EXTCLK cycle, which is
required for the image sensor to accept I2C commands for
the first time. After the wait period, it sends commands to
the image sensor using the I2C interface block to configure
it to the required frame size and colour. The command
frames are made by taking the information provided in the
configuration register as shown in Table 1. After a wake
up command is sent, the image sensor starts to produce
image data. After a complete frame is received in the bridge’s
memory, the controller sends a sleep mode command to the
sensor to reduce the power consumption. When a ReqFrame
signal is received, it sends the wake up command and the
next image data starts to store in the memory. The process
is implemented in a finite state machine (FSM) structure as
shown in Figure 5.

5.4. I2C Interface. This module is used to generate the I2C
protocol bits in singlemastermode [37]. This protocol allows
communication of data between I2C devices over two wires.
It sends information serially using one line for data (SDA)

and one for clock (SCL). For our application, the iBRIDGE
acts as master and the image sensor acts as the slave device.
Only the required subset of the I2C protocol is implemented
to reduce the overall logic usage.

5.5. Clock Generator. The Clock Generator generates the
clock signal at the EXTCLK pin, which must be fed to the
image sensor. A parallel resonant crystal oscillator can be
implemented to generate the clock [38]. An 800KHz clock
signal, called the I2C CLK, is also required for the I2C
Interface and the Sensor Control modules. The clock signal
can is generated by dividing the EXTCLK using a mod-n
counter. The I2C Interfacemodule generates clock at SCL pin
having half of the I2C CLK frequency. A simplified diagram
of this block is shown in Figure 6.

5.6. Memory Addressing and Control. This module manages
the data pins for the image sensor interface and generates
address and control signals for the Memory block of the
iBRIDGE. It implements a 19-bit up counter and is con-
nected with the address bus of the memory. The DOUT(7:0)
is directly connected with the data bus of the memory. When
VD and HD are both high, valid image data comes at the
DOUT(7:0) bus. In the valid data state, at each negative edge
event of DCLK, the address up-counter is incremented. At
each positive edge event ofDCLK,WR’ signal for thememory
is generated. After a complete frame is received, the address
up-counter is cleared and FrameReceived signal is asserted
high. The simplified diagram of the module is shown in
Figure 7.

5.7. Random Access Memory (RAM). A single port random
access memory module is used to store a frame. Depending
upon the application’s requirement, a different memory size



EURASIP Journal on Embedded Systems 7

Idle
Assert
RESET

and Wait

Configure
frame

Size and
colour

Send
wakeup

command
Wait for

FrameReceived

command

Send
sleep

INIT

FrameReceived

ReqFrame

Figure 5: FSM in the sensor control block.

I2C CLKMod-N
counter

E
X

T
C

LK

R

C1 C2
Ext.

oscilator

iBRIDGE chip
boundary

Figure 6: Clock generator module.

can be chosen. In the iBRIDGE, one multiplexer for address
bus and two tristate buffer for data-bus are used for proper
writing in and reading from the memory.

5.8. Read Address Generator. The Read Address Generator
takes the Col (9 : 0), Row (8 : 0) and ByteIndex (1 : 0) as inputs
and generates the physical memory address from column and
row position of the frame. To access a pixel value at columnC
where, (0 ≤ C ≤W−1) and at row R where (0 ≤ R ≤ H−1),
the physical memory address is calculated using (6). Here,W
is the image width and H is the image height. Bytes per pixel
is taken from the configuration register as shown in Table 1.
If the Bytes per pixel is more than one, the other consecutive
bytes can be accessed by placing the offset on ByteIndex bus.
Figure 8 shows the internal structure of this block:

Adr = Bytes per Pixel× C +
(
Bytes per pixel×W × R

)

+ ByteIndex.
(6)

6. Performance Evaluation

The proposed iBRIDGE design has been modelled in VHDL
and simulated for functional verification. As a proof of

Counter

DCLK

Valid pixel
check logic

VD

Write signal
generation

logic

HD

Mem. data

Mem. adr.

Mem. wr.
signal

FrameReceived

Bus(17:0)

DOUT(7:0) Bus(7:0)

Figure 7: Memory addressing and control module.

×

×
×

+

+
Adr(17:0)

Bytes per Pixel(7:0)

Col(9:0)

Row(8:0)

ImageWidth(9:0)

ByteIndex(1:0)

Figure 8: Read address generator module.

concept, as well as to evaluate the performance of the design
in real-world hardware, the iBRIDGE has been synthesized
in Altera DE2 board’s FPGA [39]. Several FPGA pins are
connected with different on-board components, such as
512KB of SRAM, clock generators, and 40 general purpose
input/output (GPIO) ports. The internal modules of the
iBRIDGE, except the RAM, have been synthesized onto
the Cyclone II FPGA. It occupies 433 logic elements (LE),
270 registers, and 6 embedded 9-bit multiplier elements.
The iBRIDGE’s RAM module is connected with the 512KB
SRAM of the DE2 board. The on-board clock generator is
used as the clock input for the bridge. The image sensor
interface and the image processor interface of iBRIDGE are
assigned with different GPIO ports. A commercial image sen-
sor (TCM8230MD) from Toshiba has been used as the image
sensor interface where a commercial MCU (ATmega644)
from Atmel serves as the image processor interface. The
MCU is then connected to a personal computer (PC) using
COM port. A level converter IC (MAX232) was used to
generate the appropriate logic levels to communicate with
the PC. A software is written in MS Visual Basic to display
the captured images. The block diagram of the overall
experimental setup is shown in Figure 9. The actual setup is
shown in Figure 10. In this setup, the microcontroller is set
to run at 1MHz—it shows that the image pixels can still be
fully and randomly accessed while running at such a slower
rate.

The graphic user interface (GUI) is shown in Figure 11.
Here, the user may choose point, rectangle, circle, or full
image as the desired region-of-interest. For instance, when
the “rectangle” is chosen, the user randomly chooses the top-
left and bottom-right coordinates of an image segment using



8 EURASIP Journal on Embedded Systems

Table 3: Synthesis results on Xlinx FPGA.

Xilinx FPGA device
Area utilization

Max freq. of DCLK (MHz)
Registers (% utilization) Logic cells (% utilization)

Virtex2p, XC2VP2FG256 305 (32%) 484 (51%) 248.0

Virtex4, XC4VLX15SF363 292 (31%) 501 (53%) 200.3

Spartan3, XC3S50TQ144 299 (31%) 492 (51%) 142.6

Virtex E, XCV50ECS144 296 (16%) 1162 (66%) 149.5

Virtex5, XC5VLX330 285 (37%) 368 (48%) 224.7

PC

Toshiba
image
sensor

iBRIDGE
chip

AVR Micro-
controller

Figure 9: Block diagram of the experimental setup for verification.

Toshiba
image
sensor

iBRIDGE in altera
FPGA AVR uC

COM port

Figure 10: Photograph of the actual experimental setup for
verification.

the mouse pointer. The software then sends each column
(C) and row (R) positions inside the chosen rectangle to the
MCU through the PC’s COM port. The MCU then places
the position values at the row and column buses and reads
the corresponding pixel data through the data bus.

Figures 12(a) and 12(b)–12(d) show a full image and
randomly accessed images, respectively, captured by the
MCU using the proposed iBRIDGE. It is also possible to
access the pixel data in other shapes such as ellipse, pentagon,
and hexagon. In that case, the GUI needs to be updated
with the corresponding geometric equations. As shown in
Figure 12, the image pixel thus can be accessed in a random
fashion using the iBRIDGE. The demonstration is shown
here using the setup shown in Figure 10 and a software
GUI; however, similar access is possible in real time using a
hardware-coded MCU at the desired speed, which make the
iBRIDGE very useful in embedded system applications such
as, pattern recognition, robotic vision, bio-medical imaging,
image processing, and tracking system.

The iBRIDGE hardware is synthesized using Synopsys’s
Synplify Pro [40] for different Xilinx FPGA devices. The

Figure 11: A screen-shot of the GUI.

synthesis results are shown in Table 3. It should be carefully
noted that these results give us a preassessment of the
resource utilization of the iBRIDGE chip when implemented
in FPGA. The design is however intended to be used in an
ASIC platform.

The iBRIDGE is later implemented using Artisan
0.18 um CMOS technology. The synthesis results are shown
in Table 4. A crystal oscillator pad is placed inside the chip
to connect an external crystal. The chip layout (without the
memory block) is shown in Figure 13. The design consumes
13.8mW of power when running at 10MHz with a 3.0 V
supply.

In order to show the significance of the proposed
iBRIDGE, we present two sets of comparisons. In Table 5,
we compare the synthesized hardware data of the iBRIDGE
with other image sensors. The first set of sensors are
“application-specific” and do not support random access of
the image pixels. The second sets of sensors are of general
type and support random access, but the image pixel arrays
are dedicated with fixed resolution. While comparing with
other sensors, we need to remember that the iBRIDGE does
not contain any dedicated image sensor, rather facilitates
the interfacing of image sensor with image processor, and
enables random access. In that sense, the proposed iBRIDGE
can be connected to any “general-purpose” DVP-based
image sensors of “any resolutions”—this is a key advantage.
As an example, in Table 5, we also present the result when
the iBRIDGE is interfaced with an advancedOmniVisionHD
image sensor (OV2710). With such setup, the performance
of the iBRIDGE is noticeably better compared to all sensors
in terms of pixel array, silicon area, data rate, and power



EURASIP Journal on Embedded Systems 9

(a) (b)

(c) (d)

Figure 12: Captured image: (a) full image; (b)–(d) randomly accessed pixel image using the iBRIDGE.

R
ea

d
ad

dr
es

s
ge

n
er

at
or

Sensor control

Memory addressing
and control

I2C

Clock
generator

MUX &
buffers

Figure 13: Chip layout of the iBRIDGE core.

consumption. Note that, in Table 5, the die area (i.e., core
area plus the I/O pads) is used for the iBRIDGE.

In Table 6, we present the performance of the iBRIDGE
when interfaced with both SD (TCM8230MD) and HD
(OV2710) image sensors. It can be seen that, with a
very little increase in hardware (i.e., 1.96mm2) and power
consumption (i.e., 13.8mW), any DVP-compatible com-
mercial image sensor can be converted to a high-speed

Table 4: Synthesis results in ASIC.

Inputs/Outputs 36/17

Technology 0.18 um CMOS

Die dimension (W ×H) 1.4mm× 1.4mm

Core dimension (W ×H) 0.4mm× 0.3mm

Number of cells 1,446

Number of gates 4,735

Max DCLK frequency 254MHz

Core power consumption 13.8mW @ 3.0V

randomly accessible image sensor. Given the data rate, that
is 254megasamples/sec and the equations in Section 4.1, the
iBRIDGE supports 333 fps for the VGA (640 × 480) and
56 fps for the full HD (1920 × 1080) resolution. It is worth
noticing from Tables 5 and 6 that this data rate supported by
the iBRIDGE is much higher than other image sensors for
same frame resolution.

To show the advantages of the proposed iBRIDGE, in
Table 7 we compare the performance of a low-performance
MCU interfaced with iBRIDGE with high-performance
MCUs. The comparison is based on two scenarios: one
where a high-speed image sensor is connected with a high-
performance MCU, and another where the same sensor is



10 EURASIP Journal on Embedded Systems

High-speed
image
sensor

High performance

MCU

(e.g., AT91CAP7E)

(a)

High-speed
image
sensor

iBridge
H/W

Low performance
MCU

(e.g., ATmega644)

(b)

Figure 14: Interfacing with image sensor: (a) without iBRIDGE and (b) with iBRIDGE.

Table 5: Hardware comparisons with other sensors.

Design Process
Pixel array
(resolution)

Size
Chip area
(mm2)

Data rate Power (mW)
Random
access?

Application type

Zhang et al.
[13]

0.18 um — 2.95× 2.18 6.43 2 fps 3.6 @1.8 v N
S (Wireless
endoscopy)

Nishikawa et
al. [17]

0.25 um 256× 256 10× 5 50.0 3,000 fps — N
S (Cosine
transform)

Lin et al. [18] 0.5 um 33× 25 — — — — N S (Lossy wavelet)

Yoon et al.
[25]

0.35 um 352× 288 3.55× 2.4 8.52 30 fps 20 @3.3 v N
S (Mobile

communication)

Elouardi et al.
[26]

0.6 um 16× 16 — 10.0 — 30 N S (Retina based)

Ji and
Abshire [28]

0.18 um 256× 256 3× 3 9.0 — — N S (Low light)

Takayanagi et
al. [29]

0.25 um 3840× 2160 19.7× 19.1 376.27 60 fps 597@3.3 v N S (UDTV)

Teman et al.
[27]

0.18 um 64× 64 — — 100 fps 2 N S (Tracking)

Oi et al. [9] 0.8 um 128× 128 5× 5 25.0 60 fps 6.8 @3.3 v Y S (3D viewing)

Yadid-Pecht
et al. [6]

3.0 um 80× 80 7.9× 9.2 72.68 — — Y G

Scheffer et al.
[7]

0.5 um 2048× 2048 16.3× 16.5 265.69 — <100 Y G

Decker et al.
[8]

0.8 um 256× 256 — — 390 fps 52 Y G

Chapinal et
al. [10]

0.7 um 128× 128 — 16.0 — 6.5 @5 v Y G

Dierickx [12] 0.5 um 2048× 2048 16× 16 256 8 fps — Y G

Proposed
iBridge
(without
sensor)

0.18 um Any size 1.4× 1.4 1.96
254mega-
samples/sec

13.8 @3 v Y G

iBridge with
OV HD
sensor
(OV2710)
[32]

0.18 um
Full HD

1920× 1080
— 45.74 30 fps 363.8 @3 v Y G

“—”: not reported; “fps”: frames per sec; “Y”: Yes; “N”: No; “G”: General purpose; “S”: Application specific.

Table 6: Performance advantage of iBridge with commercial image sensors.

Design Pixel array Area (mm2) Data rate Power (mW) Random access?

Toshiba SD (TCM8230MD) [33] Without iBRIDGE VGA 640× 480 36.00 30 fps 60.0 NO

With iBRIDGE VGA 640× 480 37.96 30 fps1 73.8 YES

OmniVision HD sensor (OV2710) [32]Without iBRIDGE Full HD 1920× 1080 43.78 30 fps 350.0 NO

With iBRIDGE Full HD 1920× 1080 45.74 30 fps2 363.8 YES
130 fps is the maximum rate supported by the Toshiba sensor. The iBRIDGE, however, can support 333 fps for the VGA resolution.
230 fps is the maximum rate supported by the Omnivision HD sensor. The iBRIDGE, however, can support 56 fps for the full HD resolution.



EURASIP Journal on Embedded Systems 11

Table 7: Performance advantage of iBRIDGE with high-performance MCU.

High-performance MCU Low-performance
MCU+ iBRIDGE

AT91CAP7E AT91SAM7S512 ATmega644

Cost of programmer Costly Cheap

DIP packaging
Not available (one needs an adaptor to mount them on white boards; requires
circuit design on PCB)

Available (easily mounted
on white boards)

Firmware development
(program complexity)

Relatively difficult to program; more control registers to configure; longer
development time

Simpler to program; less
configuration registers;
shorter development time

Resource utilization

Low (many advanced features such as
six-layer advanced high-speed bus
(AHB), peripheral DMA controller,
USB 2.0 full-speed device, and FPGA
Interface may not be used for simple
imaging application)

Medium (as some advanced features
such as full-speed USB 2.0 and
Real-time Timer (RTT) may not be
used for simple imaging application)

High (the features are
simple and may be
adequate for simple
imaging application)

Power consumption High (since large MCU is running at high clock speed at all times)

Low (since the small MCU
is running at low speed at
all times, however, the tiny
size iBRIDGE is running at
a higher speed)

Image sensor configuration Complex Simple

Memory capacity Fixed (160KB) Fixed (64KB)

Variable (the memory
capacity can be varied
depending on the
application)

Real-time random access of
pixels

Complex Simple (Row-Column
addressable)

Power saving mode Manual Automated

I2C protocol Needs to be configured Already configured

Maximum speed (at which
image sensor can be
interfaced)

80MHz 55MHz 254MHz

Types of image resolution
supported

SubQCIF, QQVGA, QVGA SubQCIF, QQVGA
Any resolution (SubQCIF,
QQVGA, QVGA, VGA, Full
HD, UHDV, etc.)

connected with a low-performance MCU via the iBRIDGE.
The scenarios are shown in Figure 14. It should be noted that,
as stated in Section 1, the low-performance MCU cannot
be directly interfaced with high-speed image sensors. From
Table 7, it can be seen that the iBRIDGE enables simple and
quick interfacing of low-performance MCU with high-speed
sensors. It also helps to shorten the design/development
cycle time and facilitates rapid system level prototyping.
Thus the design objectives presented in Section 3 are fully
met.

7. Conclusion

In this work, the design of a bridge architecture, named
as iBRIDGE, is proposed to overcome the speed gap
between commercially available CMOS image sensors and
microcontrollers. The iBRIDGE can be configured to work

with any DVP-based SD and/or HD image sensor. By using
the proposed bridge, a slow and low-power microcontroller
(or image processor) with little memory capacity can
communicate with high-speed image sensors to capture
images of large size. The pixel data can also be accessed in
a random access fashion through a parallel memory access
interface at a desired speed. The control and status registers
provide a comprehensive control of the image sensor. The
I2C communication protocol is built into the iBRIDGE
core. The design is power-efficient as the iBRIDGE forces
the image sensor to sleep mode when in data-access mode.
An integrated clock generator provides the necessary clock
signals eliminating the need for external clock source. When
implemented using CMOS 0.18 um Artisan library cells, the
design costs 4,735 gates and 0.12mm2 silicon area. The
synthesis results show that the iBRIDGE supports a data rate
up to 254MHz and suitable for rapid prototyping in different
high-speed and low-power embedded system applications.



12 EURASIP Journal on Embedded Systems

Acknowledgments

The authors would like to acknowledge the Natural Science
and Engineering Research Council of Canada (NSERC) for
its support to this research work. The authors are also
indebted to the Canadian Microelectronics Corporation
(CMC) for providing the hardware and software infrastruc-
ture used in the development of this design.

References

[1] J. Uthus and O. Strom, “MCU architectures for compute-
intensive embedded applications,” Atmel White Paper, 2005.

[2] L. Fanucci, S. Saponara, and A. Morello, “Power optimization
of an 8051-compliant IP microcontroller,” IEICE Transactions
on Electronics, vol. E88-C, no. 4, pp. 597–600, 2005.

[3] S. Saponara, L. Fanucci, and P. Terreni, “Architectural-level
power optimization of microcontroller cores in embedded
systems,” IEEE Transactions on Industrial Electronics, vol. 54,
no. 1, pp. 680–683, 2007.

[4] A. Holberg and A. Saetre, “Innovative techniques for
extremely low power consumption with 8-bit microcon-
trollers,” Atmel White Paper, 2006.

[5] T. Wilmshurt, Designing Embedded Systems with PIC Micro-
controllers: Principles and Applications, Newnes, 2007.

[6] O. Yadid-Pecht, R. Ginosar, and Y. Shacham-Diamand, “A ran-
dom access photodiode array for intelligent image capture,”
IEEE Transactions on Electron Devices, vol. 38, no. 8, pp. 1772–
1780, 1991.

[7] D. Scheffer, B. Dierickx, and G. Meynants, “Random address-
able 2048 x 2048 active pixel image sensor,” IEEE Transactions
on Electron Devices, vol. 44, no. 10, pp. 1716–1720, 1997.

[8] S. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini,
“A 256 x 256 CMOS imaging array with wide dynamic range
pixels and column-parallel digital output,” IEEE Journal of
Solid-State Circuits, vol. 33, no. 12, pp. 2081–2090, 1998.

[9] R. Oi, T. Hamamoto, and K. Aizawa, “Pixel based random
access image sensor array for real-time IBR,” in Proceedings of
the 1st IEEE International Conference on Sensors (Sensors ’02),
vol. 1, pp. 134–139, June 2002.

[10] G. Chapinal, S. A. Bota, M. Moreno, J. Palacin, and A. Herms,
“A 128 x 128 CMOS image sensor with analog memory for
synchronous image capture,” IEEE Sensors Journal, vol. 2, no.
2, pp. 120–127, 2002.

[11] R. L. Baer and V. K. Srikantam, “Imaging parallel interface
RAM,” U. S. Patent no. 20070024713, July, 2005.

[12] B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J.
Vlummens, “Random addressable active pixel image sensors,”
in Advanced Focal Plane Arrays and Electronic Cameras, vol.
2950 of Proceedings of SPIE, pp. 2–7, Berlin, Germany, October
1996.

[13] M. Zhang, A. Bermak, X. Li, and Z. Wang, “A low power
CMOS image sensor design for wireless endoscopy capsule,” in
Proceedings of IEEE-BIOCAS Biomedical Circuits and Systems
Conference (BIOCAS ’08), pp. 397–400, November 2008.

[14] D. O. Faigel and D. Cave,Capsule Endoscopy, Saunders Elsivier,
2008.

[15] J. H. Kim, S. G. So, and K. S. Joo, “Development and
performances of a dental digital radiographic system using a
high resolution CCD image sensor,” in Proceedings of IEEE
Nuclear Science Symposium Conference Record, vol. 3, pp.
1649–1653, October 2004.

[16] Y. Cao, F. Tang, A. Bermak, and T. M. Le, “A smart CMOS
image sensor with on-chip hot pixel correcting readout
circuit for biomedical applications,” in Proceedings of the 5th
IEEE International Symposium on Electronic Design, Test and
Applications (DELTA ’10), pp. 103–107, January 2010.

[17] Y. Nishikawa, S. Kawahito, M. Furuta, and T. Tamura, “A high-
speed CMOS image sensor with on-chip parallel image com-
pression circuits,” in Proceedings of IEEE Custom Integrated
Circuits Conference (CICC ’07), pp. 833–836, September 2007.

[18] Z. Lin, M.W. Hoffman,W. D. Leon, N. Schemm, and S. Balkir,
“A CMOS front-end for a lossy image compression sensor,”
in Proceedings of the 7th IEEE International Symposium on
Circuits and Systems (ISCAS ’07), pp. 2838–2841, May 2007.

[19] K. Takita and S. Hirose, “Development of image sensor unit
for rescue devices,” in Proceedings of the IEEE International
Conference on Robotics and Biomimetics (ROBIO ’05), pp. 687–
692, July 2005.

[20] K. Umeda, “A compact range image sensor suitable for robots,”
in Proceedings of IEEE International Conference on Robotics and
Automation, vol. 3, pp. 3167–3172, May 2004.

[21] H. J. Park, K. B. Kim, J. H. Kim, and S. Kim, “A novel
motion detection pointing device Using a binary CMOS image
sensor,” in Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS ’07), pp. 837–840, May 2007.

[22] Y. Oike, M. Ikeda, and K. Asada, “A CMOS image sensor for
high-speed active range finding using column-parallel time-
domain ADC and position encoder,” IEEE Transactions on
Electron Devices, vol. 50, no. 1, pp. 152–158, 2003.

[23] S. Zhan, T. Kurihara, and S. Ando, “Facial authentication
system based on real-time 3D facial imaging by using corre-
lation image sensor,” in Proceedings of the 6th International
Conference on Intelligent Systems Design and Applications
(ISDA ’06), vol. 2, pp. 396–400, October 2006.

[24] F. C. Kao, C. Y. Huang, Z. H. Ji, and C. W. Liu, “The design
of intelligent image sensor applied to mobile surveillance
system,” in Proceedings of IEEE Intelligent Vehicles Symposium
(IV ’07), pp. 264–269, June 2007.

[25] K. Yoon, C. Kim, B. Lee, andD. Lee, “Single-chip CMOS image
sensor for mobile applications,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 12, pp. 1839–1845, 2002.

[26] A. Elouardi, S. Bouaziz, A. Dupret, L. Lacassagne, J. O.
Klein, and R. Reynaud, “A smart sensor for image processing:
towards a system on chip,” in Proceedings of International
Symposium on Industrial Electronics (ISIE ’06), vol. 4, pp.
2857–2862, July 2006.

[27] A. Teman, S. Fisher, L. Sudakov, A. Fish, and O. Yadid-
Pecht, “Autonomous CMOS image sensor for real time
target detection and tracking,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’08),
pp. 2138–2141, May 2008.

[28] H. Ji and P. A. Abshire, “A CMOS image sensor for low light
applications,” in Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS ’06), pp. 1651–1654,May 2006.

[29] I. Takayanagi, M. Shirakawa, K. Mitani et al., “A 1.25-inch
60-frames/s 8.3-m-pixel digital-output CMOS image sensor,”
IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2305–
2313, 2005.

[30] T. Lenart and V. Öwall, “Xstream—a hardware accelerator for
digital holographic imaging,” in Proceedings of the 12th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS ’05), Gammarth, Tunisia, December 2005.

[31] “Aptina MT9V011 Image Sensor,” September 2010, http://
www.aptina.com/.



EURASIP Journal on Embedded Systems 13

[32] “OmniVisoin OVM7690 CameraCube,” September 2010,
http://www.ovt.com/.

[33] Toshiba, “TCM8230MD Image Sensor,” September 2010,
http://www.sparkfun.com/.

[34] “National LM9618 Image Sensor,” September 2010, http://
www.datasheetcatalog.org/.

[35] “Kodak KAC-9630 Image Sensor,” September 2010, http://
www.kodak.com/.

[36] “Pixelplus PO6030 Image Sensor,” September 2010, http://
www.pixelplus.com/.

[37] “The I2C Bus Specification,” September 2010, http://www
.nxp.com/.

[38] R. Wagner, “UART Crystal Oscillator Design Guide,” Data
Communications Application Note, March 2000, http://
www.exar.com/.

[39] “Altera DE2 Board,” September 2010, http://www.altera.com/.
[40] “Synopsys,” September 2010, http://www.synopsys.com/.


	1. Introduction
	2. Background
	3. Design Objectives
	4. The DVP Interface
	4.1. Standard-Definition (SD) CMOS Image Sensors.
	4.2.High-Definition (HD) CMOS Image Sensors.

	5. The iBRIDGE Architecture
	5.1. Configuring the iBRIDGE.
	5.2. Operation of the iBRIDGE.
	5.3. Sensor Control.
	5.4. I2C Interface.
	5.5. Clock Generator.
	5.6. Memory Addressing and Control.
	5.7. Random Access Memory (RAM).
	5.8. Read Address Generator.

	6. Performance Evaluation
	7. Conclusion
	Acknowledgments
	References

