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Cryptographic random number generators seeded by physical entropy sources are employed in many embedded security systems,
including self-encrypting disk drives, being manufactured by the millions every year. Random numbers are used for generating
encryption keys and for facilitating secure communication, and they are also provided to users for their applications. We discuss
common randomness requirements, techniques for estimating the entropy of physical sources, investigate specific nonrandom
physical properties, estimate the autocorrelation, then mix reduce the data until all common randomness tests pass. This method
is applied to a randomness source in disk drives: the always changing coefficients of an adaptive filter for the read channel
equalization. These coefficients, affected by many kinds of physical noise, are used in the reseeding process of a cryptographic
pseudorandom number generator in a family of self encrypting disk drives currently in the market.
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1. Introduction

Cryptographic random number generators are employed
in many embedded systems, like in self encrypting disk
drives, such as the Seagate Momentus Full Disk Encryption
(FDE) drives. The generated random numbers can be used
for encryption keys, facilitating secure communication (via
nonces), performing self-tests, and so forth. Previous states
of the random number generator are difficult to securely
store, because an attacker could read, and in some point in
the future restore earlier states (together with any possible
local authentication tags) with the help of specialized tools
(spin stand), and so force the generation of the same random
sequence as earlier. This causes repeated nonces, recurring
use of the same encryption keys, and so forth, that is, loss of
security.

Physical entropy sources are used to initialize crypto-
graphic random number generators at every power up, and
at special requests, like at reinitializing the firmware, or
before generating long used cryptographic keys. Seeding with
unpredictable physical values makes a cryptographic random
number generator to supply pseudorandom sequences, with
negligible probability of repetition. Generating secure ran-
dom sequences this way needs no secure protected storage
for keys or for the internal state of the generator, therefore it
reduces costs and improves security.

Below we describe how an available digital signal with
random components, the coefficients of the adaptive channel
filter, is used in seeding a cryptographic random number
generator in self encrypting disk drives. The estimation of
the available physical entropy is discussed, resulting in an
efficient seeding process. These should provide confidence
in the generated random numbers for their users, and fools
for developers of embedded random number generators in
testing and evaluation of designs.

2. Disk Drive Architecture Overview

[1] The write and read transducers are mounted on the head
which is separated from the rotating disk by an air bearing
that keeps the read/write transducers at a distance of about
10 nm from the disk surface. The head is mounted on an arm,
which is connected to an actuator. In 3.5” disk drives this
arm is about 5 cm long and prone to mechanical vibrations,
affected by air turbulence while the drive is operating. The
vibration in vertical direction influences the amplitude of the
read signal, while the radial vibration affects the noise pattern
from the granular structure of the magnetic particles and
crosstalk from neighbor tracks, because of the small spacing
between tracks (in the range of 10-100 nanometers).

To guide the head to remain on track, servo patterns are
written on the disk. These servo patterns are organized in



radial spokes which are traversed by the head about 200 times
per revolution (at 5400 rpm rotational speed 18 000 times
per second). After the head crosses these servo patterns a
controller evaluates the read signal and corrects the radial
position accordingly. It also tunes the channel equalizer filter
for optimum signal shape. The tracking correction is based
on the current radial position, velocity, and acceleration
of the head. These values are nondeterministic, strongly
affected by turbulent airflow and mechanical vibrations. No
one succeeded so far with a useful model of the disk drive
physics. In [2] some equations are presented, but they do not
give a reasonably accurate picture of disk drive internals.

3. Entropy Requirements

In this paper we show that disk drives can provide physical
randomness for seeding cryptographic random number
generators, but they are targets to specific attacks, exploiting
their use and special characteristics, leading to disk specific
entropy requirements. The generalized “birthday bound”
tells that after taking 2V? samples there is a 50% chance of
a uniformly distributed n-bit random variable to attain the
same value more than once. In a data center an attacker could
observe thousands of disk drives rebooting thousands of
times, so 107 ~ 223 samples from different random number
sequence are easily taken. When these results are shared over
a network, one could build a database from over 232 initial
sets of values of the random number generator, to search for
a collision. It gives a requirement of at least 64 bit entropy
of the seed. Of course, 50% chance of a successful attack
is far too high. A commonly accepted allowable collision
probability is 107® (half of the chance of hitting the jackpot
in a 5-out-of-90 lottery), which adds 27 bits to the entropy
requirements for the seed, so for unlikely repeated sequences
the entropy of the seed has to be more than 90 bits. To
account for HW differences, environment changes, and so
forth, at least 128 bit entropy is desired for the seed of a
cryptographic random number generator.

The smallest AES cipher needs 128-bit fully unpre-
dictable encryption keys, also posing the requirement of at
least 128 bit seed entropy. (High entropy public keys and
longer symmetric keys must be generated with several calls
to a reseeded cryptographic random number generator.)

4. Entropy Sources in Rotating Disk Drives

There are many unpredictable physical processes, noise
sources in disk drives. Economic constraints compel using
electronic signals, which are available in digital form in
standard unmodified disk drives, and which contain strong
random components. At boot time, or at a special request
they provide the entropy sources to seed an SW-based
cryptographic random number generator of self encrypt-
ing disk drives, ensuring the uniqueness of the generated
(pseudo)random sequences with very high probability.

In disk drives currently in the market several such sources
are used. Combinations of their data improve the quality,
the speed of the random number generation, and the safety
against potential attacks influencing the entropy sources.
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4.1. Timing Variations. In the disk drive electronics there are
internal high speed counters available. Their least significant
bits are sufficiently random when sampled during the disk
boot up process, or in general, after actions involving a lot
of mechanical activities of timing uncertainties, such as at
spin-up and rotation of the motor and platters, and at arm
movements in seek operations. These random bits can be
collected into an entropy pool, consumed when needed. The
entropy of the timing data is analyzed in [3].

Such random number generators have been published,
for example, the slow [2], implemented externally in the
host computer, where synchronous communication masks
off most of the original timing variations.

4.2. Tracking Error. In [4] another randomness source was
investigated, with the tracking error of the magnetic read
head trying to remain in the middle of the path of the
recorded data. Consecutive samples are strongly correlated,
which limits the useable entropy. Our experiments in the
newest generation of disk drives showed much less achievable
speed or entropy/s than claimed in [4], but the position
error of the read/write head certainly represents another
alternative source of randomness.

4.3. Channel Filter Coefficients. The drive firmware can
access the coefficients of an adaptive channel-filter, via a
diagnostic interface between the main control ASIC and
the channel signal processor, which also does the coding/
decoding of the head signal [5]. The coefficients represent
resistor values of an analog filter, continuously tuned by
the control mechanism of the read/write channel chip
to make the peaks of the output signal close to equally
high. For details about the algorithms used in the channel
equalization filters see [6] or [7]. The filter coefficients
depend on the amplified head signal, containing many
random components, including head noise; electronic noise;
the effects of motor speed variations; internal air turbulence;
the vibration of the head arm; the amplitude uncertainty due
to the flight height variations of the read head; the actual path
of the head over the track, influenced by the tracking errors
and their corrections.

In the Momentus FDE drives there are 12 such coeffi-
cients accessible, each 8bit long. Coefficient 11 is fixed as
asymmetry compensation tap, set for each head and zone
in the manufacturing process (it is included in the analysis
below as sanity check for the algorithms, it does not provide
randomness). The other coefficients are constantly adapted
to the noisy distorted signal of the servo patterns.

When the random number generator is reseeded, seek
operations are executed followed by a read from a fixed
location. At least a full track worth of data affect the
adaptive filter, and significant mechanical arm movements
are involved. These translate to hundreds of changes in
the adaptive channel filter, strongly influenced by physical
noise; therefore, there will be very little correlation between
consecutive acquired values of the same coefficients.

The noise in the read-back signal in modern disk drives
is very high. In a disk drive under investigation the read-back
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F1GURE 1: Noisy read-back signal.
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FIGURE 2: Signal after equalization.

signal was captured with a digital storage oscilloscope and
depicted in Figure 1.

One can see wildly varying signal peaks. The adaptive
equalization filter makes the height of these peaks more
uniform, as shown in Figure 2.

History. The noise sources and levels have been extensively
studied; see [2, 8—11]. Their effects on the signal in the read
channel have also been investigated; see [12—15]. The result-
ing inherent randomness in the channel filter coefficients has
been proposed to be used for random number generators in
[16], but the included randomness extraction algorithm is
very inefficient.

Below the nonrandom physical properties of the channel
filter coefficients and their entropy estimation technique
is discussed, then we describe a secure and efficient RNG
implementation, taking into consideration the randomness
requirements and the entropy of the randomness source
under varying environmental conditions.

5. Entropy Estimation

We analyzed 22 data sets, 100 M coefficient bytes in each.
They were collected in continuous sessions (performing
two seek operations and reading the full track before data
acquisition), from Seagate Momentus FDE disk drives of
different capacities from different manufacturing sites, under
varying environmental conditions (temperature 0°C, 20°C,
60°C; supply voltage 4.75V, 5V, 5.25V). The samples were
captured over a diagnostic port and recorded in another PC,
not to influence the data collection.
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F1GURE 3: Coefficient changes in time.

There have been some non-random properties identified
in the channel filter coefficient data, which have to be
considered when the available entropy is estimated. In the
sequel we will estimate the entropy as 16 bits in each block
of coefficients (96 raw bits), which can be acquired in every
10 milliseconds. The yield is 1.6 K very high quality random
bits per second.

We found no significant differences in the randomness
between datasets, that is, the manufacturing process and
environmental conditions do not considerably influence the
available entropy. An attacker gains no exploitable infor-
mation by examining a disk drive, over generally available
data (collected from other drives), or influencing its working
environment.

5.1. Data Dependencies. The graph of the 12 filter coefficients
is of relatively stable shape in time. Figure 3 shows the curves
of 10 consecutive captured sets of filter coefficents from the
same drive, plotted on top of each other. The x-axis is the
index of the filter coefficients (1-12), the y-axis is the value of
the corresponding coefficient byte (P1-P12). A curve plotted
in one color shows the 12 filter coefficient values of one
sample set, connected by straight lines.

One can observe that at some places (i.e., between x = 4
and 5) these segments are almost parallel. It means that
if P4 increases, P5 does, too, therefore, they are positively
correlated. Other segments, like the ones between x = 7
and x = 8, cross each other at roughly the same point
half way in between. It means that if P7 decreases, P8
increases by roughly the same amount. It is an indication
of negative correlation between P7 and P8, therefore, the
entropy of coefficient P7 and P8 together is not much
larger than that of P7 alone, or the entropy of P4 and P5
together is close to the entropy of P5 alone. These point to
a potential issue: the available entropy could be less than the
estimates the coefficient samples provide in isolation. This
autocorrelation is investigated in subsections 5.2 and 5.3 by
statistical methods.
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FIGURE 4: Histograms of the filter coefficients.

5.2. Coefficient Distribution. By plotting the histograms
of each filter coefficient from contiguous measurement
sequences of a disk drive (Figure 4) we can see that each
individual coefficient attains only a few distinct values, and
almost all their variability is preserved in their few least
significant bits (bits [1,2]—bits [1,2, 3,4]).

The widths of the bins (bars) help visually comparing the
histograms. Curiously, the coefficients are not uniformly or
normally distributed, but can be well approximated by the
supperposition of two normal distribution (bell) curves, but
it is irrelevant to our discussions.

5.3. Autocorrelation of Sequences of Individual Coefficients.
We used the discrete Fourier transform of the same
individual coefficient sequences described above to compute
many autocorrelation values at once: F1(F (x) - F'(x)),
where ¥ (x) denotes the discrete Fourier transform of the
sequence x, F'(x) is its transposed complex conjugate and
F~HX) is its inverse. (It gives the same results as the direct
method used by the MATLAB tstool/autocorrelation,
but faster.) In Figure5 the autocorrelation values
are plotted for each of the 12 coefficient sequences,
lags = 1-50.
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F1GURE 5: Autocorrelation of the filter coefficients.

None of the autocorrelation values exceeds 219%,
with an average around 13%. The little residual (large
lag) autocorrelation values are the artifacts of the very
nonuniform distributions. The overall entropy loss is due
to uneven distributions and short-term autocorrelation
(which only causes a loss of a handful bits entropy).
The hashing process described below will eliminate both
problems.

5.4. Entropy of the Coefficients. Most of the filter coefficients
carry about 3 bits of Shannon entropy: H = —X p; log, (p;).
The exceptions are coefficient 1 carries 1.5 bit, coefficient 2
does 3.5 bits , and coefficient 4 does 2.4 bits. If all of them
were independent, the overall entropy of the 12 channel
filter coefficient bytes could be 32 bits. Statistical tests below

showed less actual randomness (16-24 bit), because of the
correlation among them, and because of their internal
autocorrelation.

5.5. Min-Entropy. Often the so-called min-entropy is better
for estimating the security: M = —log, (max(p;)).

A distribution has a min-entropy of at least b bits if
no state has a probability greater than 27°. It estimates the
complexity of such attack strategies, when the attacker seeds
his cryptographic random number generator (identical to
the one in the disk drive) with the most likely coefficient
values. If he finds a match, he guessed the seed right. If
he does not, he reboots and checks the random numbers
generated by the disk drive again, until the most likely filter
coefficients appear to be the actual seed.
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This attack is slow; it needs tens of seconds for each
reboot. (Working on many identical disk drives, costing
$50-100 each, could speed up the process proportionally,
but with a very large investment.) If instead an attacker
feeds various possible values of the filter coefficients to a
copy of the cryptographic random number generator, he can
try millions of seed values in the time of one reboot. In
this sense, the Shannon entropy measures better the security
of physical randomness sources seeding a cryptographic
random number generator in disk drives, but we have to
make sure that the min-entropy is also reasonable, that is, no
seed occurs at exploitable frequency (1 second trial/30 year:
Vpi<1079).

5.6. Mix-Truncate (Hash) Entropy Estimation. The entropy
estimation process is the following: hash the bits of each
channel filter coefficient dataset (12 * 8 = 96bits) to k
bit output. Decrease k from 32 (the upper bound of the
entropy from Figure 6) until the concatenated output blocks
pass all commonly used randomness tests. Perfect hashing
makes the distribution of the results more uniform and
reduces the autocorrelations (see the appendix), in the costs
of decreasing the number of random bits. (We used the SHA1
hash on zero-padded input and keeping the least significant
k bits of its 160 digest bits. SHA1 has no known exploitable
weakness in this mode: an attacker with reasonable resources
cannot distinguish it from a perfect hash.)

There are other methods in use to shrink data to
improve randomness. The first such published method was
the Neumann corrector to remove bias [17], but more recent
entropy amplification techniques are all related to hashing
[18-20]. (A hash function maps arbitrary data to a fix range
of integers, in such a way that simple structures of the input
sequences are not preserved.)

The employed randomness tests are very sensitive to non-
uniform distribution of k-bit blocks, but many other non-
random properties are checked, too. When all the tests pass
with a particular choice of k, we know that each possible k-
bit block in the sequence of the hashed coefficient sets occurs
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at roughly the same number of times: each hashed filter
coefficient set appears independently, at about 27 frequency.
Consequently, no filter coefficient set occurs with probability
much larger than 2%, that is the min-entropy of one
coefficient set is about k. When n such independent blocks
are used to seed the random number generator, an attacker
has a search space of at least 2" elements when trying
different seeds in a copy of the RNG to guess the seed of the
disk drive (e.g., n = k = 16 gives about 22°° > 1077 seeds to

try).

5.6.1. Justification of the Mix-Truncate Entropy Estimation.
Our use of physical randomness justifies this hashing-then-
statistical testing process, although proving true randomness
is impossible from any finite number of input bits, for
example, the bit sequence could be periodic with a period
longer than the observed data, or all unseen bits could be 0.
These cannot be ruled out by the observed data. We can only
state that no evidence for nonrandomness was found.

Common statistical tests accept many cryptographically
hashed non-random sequences as perfectly random, if the
size of the hash output is large enough (greater than the
binary logarithm of the length of the sequence). For example,
if we hash the members of the sequence 0,1,2,...,10° to
more than 30 bits each, the result will pass all the standard
statistical randomness tests, although the original sequence is
clearly not random, and this non-randomness is apparent in
the finite input data. Arbitrarily many similar pseudorandom
sequences can easily be constructed, which fool the statistical
randomness tests, even if we make certain assumptions about
the data, like lack of autocorrelation.

However, physical considerations established that our
sample blocks are independent to a great degree (which
invalidates the pseudorandom counter examples above).
Autocorrelation tests did not refute this claim. Note that
the independence has physical reasons, not mathematically
proven.

The proposed hashing process changes data blocks
independently from each other, and so it does not intro-
duce pseudorandomness, which would make the statistical
test suites to accept hashed regular sequences. Hashing
affects individual distributions and dependencies within data
blocks. Even correlations between groups of coefficients are
removed (see the appendix).

Statistical randomness tests check long-term nonran-
domness, like that the hashed blocks do not repeat more
often than true random blocks would, and there are no
exploitable ways to guess the next block, having observed
an arbitrary number of hashed blocks. These are sufficient
for the security of seeding cryptographic pseudorandom
number generators with the hashed data blocks, originated
from sets of channel filter coefficients, separated by largely
unpredictable mechanical events.

5.6.2. Security of Hashed Seeding of Pseudorandom Number
Generators. When the analyzed sequence is used for seed-
ing (cryptographic) pseudorandom number generators, we
don’t need uniform randomness of the seed blocks: but large
variability (no one should occur with large probability), and
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independence (seed blocks at any distance vary a lot). The
later implies the former: if a block repeated often, autocor-
relation would be large. Independence provides protection
against an attacker, who records several generated random
numbers and tries to derive seeds for an identical random
number generator, to find a match. Our sets of seed blocks
take a huge number of different values, and so an actual
one cannot be guessed with a significant chance of success;
identical sequences occur very rarely.

Low autocorrelation assures that no seed blocks occur
frequently nor are some blocks correlated. Otherwise an
attacker could find frequent blocks in another drive, or
could modify spied out earlier seed blocks according to the
property, which caused large autocorrelation. This would
increase the chance of a successful guess of a seed, revealing
all newly generated random numbers until a fresh seed is
applied.

5.6.3. Hash Functions for Data Whitening. Physical random
numbers almost always have to be whitened, because their
distribution could be non-uniform and changing in time
and with environmental conditions. Therefore, even for non-
cryptographic applications the physical randomness source
is usually hashed (corresponding to seeding pseudorandom
number generators), although for lower security require-
ments there are much faster hash algorithms (e.g., the ones
in [21]) than the secure hash functions used in cryptography
(e.g., SHA1/2).

5.7. Randomness Tests. There are many randomness tests
published, for example, [22-26]. A survey is in [27].

Diehard Test Suite. 15 different groups of statistical random-
ness tests were published by Marsaglia [23, 24]. This set
of tests is probably the most widely used. Many different
properties are tested and the protocol of the results is 17
pages long. The randomness measures are 250 P-values. The
standard way for accepting a single p-value is to check if it is
in a certain interval, like [0.01,0.99]. The difficulty with the
interpretation of the Diehard test is to establish an overall
acceptance criterion, because related tests are applied to the
same set of data and so the results of the individual tests are
correlated.

A procedure used in [28, 29] for testing the random
number generator implemented in the Intel Pentium III chip
works as follows. To come from a 95% confidence interval for
each of the 250 test results the 5% confidence level is divided
by 250, resulting in 0.02%. The Diehard test is considered
to pass if all 250 P-values are in the corresponding interval
[0.0001, 0.9999]. We adopted this acceptance criterion, with
an additional check described in [4]: count the number of
near-fails among the 250 Pvalues returned by the Diehard
tests (those P-values which are not in [0.025, 0.975]). Since
asymptotically the relative number of fails for the given
interval is 5%, there must be about 12 near-fails among the
250 values. These near fails are expected, as the Diehard test
suite states in the test protocol: “Such p’s happen among the
hundreds that DIEHARD produces, even with good RNG’s. So

5

keep in mind that “p happens”.

The Diehard (or the NIST) tests are not sensitive enough
to autocorrelations, which occur at other than integer
multiples of 8 bit offsets. (There are data sets, which pass the
Diehard tests at k = 28, but failed with k = 24 reduction.)
Therefore, only the tests of hashed filter coefficient sets to
k = 24, 16, and 8 bits can be fully trusted. Some data sets
proved to be sufficiently random with k = 24, but a few did
not, while all of the Diehard tests passed on our every hashed
channel filter coefficient sets at k = 16 or less.

NIST 800-22 Randomness Tests [26]. When the Diehard tests
and Maurer’s test passed on our hashed data, the NIST tests
also accepted the input as random. The main advantage of
the NIST test suite is that it works on data of size other than
10 MB, needed for Diehard, but our hashed files were large
enough for Diehard. Each one of the NIST tests provides a
P-value, and depending on the length of the sequence an
acceptance threshold is provided. The ratio of accepted P-
values for each test must be above a given level. For the tests
to pass the collected P-values are assessed in the end, to verify
their uniform distribution between 0 and 1, which is similar
to the overall acceptance of Diehard.

Maurer’s Universal Randomness Test. It was published in
[25], and further investigated in [30]. The test analyzes the
statistics of gaps between the closest occurrences of the same
bit blocks. A test for each block size 1-16 was performed.
Larger test blocks required huge datasets for high confidence
in the test results. For example, the necessary size of the data
sets for 16-bit test blocks is 1000 - 21¢ - 12 ~ 800 MB. All
the Maurer tests with block sizes b=1-16 passed, when the
data was hashed to k = 16. (Maurer’s test was developed
for stationary ergodic entropy sources with finite memory.
In our case virtually no memory is present, because of the
many seek-induced filter coefficient updates between data
acquisitions.)

Autocorrelation. the MATLAB tstool/autocorrelation tool
was used, and the results (one depicted in Figure 7) were
compared to high quality pseudorandom data. All hashed
channel filter coefficient dataset with k = 24 or less
provided autocorrelation curves indistinguishable from that
of uniform, true random data (we found roughly the same
maximum, average, and standard deviation).

Transform-Tests. An FFT-test is included among the NIST
tests. By computing the correlation of the hashed coefficient
sequences to periodic signals (sine waves) the FFT test finds
periodic components in the hashed data. The physical model
and the observed level of autocorrelation in the individual
coefficient sequences predict no periodic signal components,
which was confirmed by these tests on every hashed channel
filter coefficient dataset with k = 24 and 16.

Walsh Transform-Test. It finds other type of structured
(pseudoperiodic) components in the data. The physical
model and the observed level of autocorrelation in the
individual coefficient sequences predict no significant signal
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FIGURE 7: Autocorrelation of a 96 — 16 bit hashed coefficient
sequence.

components of this type, either, which was confirmed by
the Walsh transform tests on every hashed channel filter
coefficient dataset with k = 24 and 16 (showing little
deviation from the expected values).

6. The Cryptographic Pseudorandom
Number Generator

With the techniques described in Section 5.6 we found that
one channel filter coefficient datasets provides at least 16 bit
entropy, therefore eight datasets are enough for our desired
128 bit entropy. In this section the algorithm is described,
how the available physical randomness is converted to
cryptographically secure random numbers. Incidentally, it
also uses the SHA1 hash function.

Channel filter coefficients are collected as a background
task. Eight datasets need all together about 80 ms (1.6 Kb/s),
allowing 12 reseedings a second, which would only rarely
be needed. By mixing in samples of a free running counter,
additional randomness is gained and the safety improves
against HW-based attacks trying to influence the channel
filter coefficients. Four LS bits of each 8 sets of 11 channel
filter coefficients, together with the counters, give 384 raw
seed bits, used in two halves as XSEED values, in two
iterations of the FIPS-186-2 generator.

The cryptographic random number generator specified
in the FIPS-186-2 document [31] was used with SHA1 as
hash function and 24-byte (192 bit) internal state. When x is
a desired (160-bit) pseudorandom number (may be cut and
the pieces combined for the requested number of bits), the
following FIPS-186 algorithm generates 1 random values of
X.

Step 1. Choose a new secret value for the seed key, 0 <
XKEY < 2192,

Step 2. In hexadecimal notation let

t = 67452301 EFCDAB89 98BADCFE 10325476

1
C3D2E1F0. W
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This is the initial value for HO||H1||H2||H3||H4 in the SHA1
hash function. (“||” is concatenation.)

Step 3. For j =0tom — 1do

(a) XSEED; = optional user input

(b) XVAL = (XKEY + XSEED;) mod 21%2
(c) xj = SHAI(t, XVAL)

(d) XKEY = (1 + XKEY + x;) mod 292,

6.1. Accumulated Entropy. The initial entropy of XKEY (the
internal state of the cryptographic pseudorandom number
generator) is 0 at boot up. After Step 3(d), regardless of the
entropy of XSEED, the entropy in XKEY cannot increase to
more than 160 bits (the length of the added x), stored in the
LS (least significant) 160 bits of XKEY. In the next iterations
only this LS 160 bits are further modified (disregarding a
possible carry bit), therefore the accumulated entropy stored
in XKEY increases very slowly beyond 160 bits.

During initialization (Step 1) we can choose a new secret
value for XKEY. It can be anything (not specified), so we
can use the current XKEY value after a few iterations of
the random number generation, shifted up to fill its most
significant (MS) bits. Subsequent calls of the RNG affect the
LS bits of XKEY, keeping the initial entropy stored in the MS
bits intact.

Accordingly, the seeding process can be performed in fwo
phases. The first phase starts with an all 0 XKEY and uses
half of the total number of seeding rounds to mix in the HW
entropy. In the second phase we shift the LS 160 bits of the
current XKEY to its MS bits and then perform the remaining
rounds to mix in the rest of the HW entropy. During these
steps the generated random numbers (x;) are discarded, only
the internal state (XKEY) is kept updated.

For accumulating more than 320bit internal entropy
(when XKEY is chosen longer than 40 bytes) one can execute
more phases like the above. SHA1 limits the number of
usable bits to 512, but if needed, it can be replaced by hash
functions operating on larger (or on multiple) blocks.

6.2. Compression of the HW Seed. The format and content
of the seeding data is not specified in the original FIPS-
186-2 document, therefore preprocessing is allowed, and
desirable. Keeping fewer LS bits of the filter coefficients (as
many as necessary to preserve the entropy) each channel filter
coefficient data set can be compressed to 40 bits, without
significant computational work. The LS bits of free running
counters are then attached. Several compressed blocks like
these can be used concatenated in Step 3(a), speeding up the
seeding process proportionally, by trading slow SHA1 hash
operations for fast data compression steps.

7. Future Improvements

The FIPS-186-2 cryptographic pseudorandom number gen-
erator [31] could be replaced by one compliant to the NIST
Special Publication 800-90: Recommendation for Random
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FIGURE 8: More uniform distribution via hashing of 1, 256 and 4096
samples together, respectively.

Number Generation Using Deterministic Random Bit Gen-
erators [32]. SHA1 can be replaced by SHA-256, seeded with
more HW data, providing 256 bit physical entropy in each
call.

Appendix

More Uniform Distribution,
Less Autocorrelation via Hashing

Informally. A hash function f returns the same value h for
any input value from a set H(h). These H sets are all of
“similar” size and not related by “simple” transformations.
We assume that the input is “independent” from the internal
structure of the hash function, for example, not only
elements of H(h) are fed to the function (which would always
return h). If f isa cryptographic hash function, and the input
& is physical random, this is very likely the case; that is, we
may assume that & = f(&) is random.

In our application the length of the input values of the
hash function is fixed (96 bits), thus the size of the domain
of possible inputs is finite (2%¢). The output is truncated
to a given length (e.g., to 24 bits, making the size of the

range of the output 224). In this example 2°°/224 = 272 is the
reduction factor, these many possible input values yield the
same output, in the average.

Claim 1. The distribution of the hashed values h = f(&) of
a random variable & is closer to uniform than the distribution
of &. The expected improvement is proportional to the square
root of the reduction factor.

Justification. The probability of the union of k different
atomic events is the sum of the individual probabilities. We
show smoothness improvement in the distribution of the
sum of k copies of a new random variable #, which takes
values the probabilities of the individual original samples.
(Because the sum of the copies of the same random variable
includes the case, when some of them are equal, there
is a small error. In a large domain, like 2% values, with
significantly smaller k, like 224, this collision has negligible
probability.)

The hash function lumps together certain input values
of the possible n and produces a single output. It behaves
like adding m copies of a random variable taking these
probabilities as values. When the input is unrelated to the
structure of the hash, each selection is of equal probability,
p=1/n

The unevenness (deviation from the uniform distribu-
tion) is measured by the standard deviation of the individual
probability values (relative to the expected value). The
expected value of the sum of m samples increases m-fold
from the original, the same as the increase of the variance,
so the standard deviation increases /m -fold. Therefore,
hashing m samples together improve the evenness +/m-fold.

It is true for large m, in the average. Around a factor of
two deviations from this value can be observed in the praxis
for a given hash function and sufficiently non-uniform initial
distribution of the samples.

The original expected value was yy = 1/n, having n
probability values summing up to 1. The estimated standard

deviation is oy = \/(1/(71 1) > (pi — 1/n)*. When blocks
of samples are hashed together to obtain k = n/m new sample
values, the expected value is ¢ = 1/k, having k probability
values summing up to 1. The standard deviation is ¢ =

Wk = 1) 3 (S pi — 1/k)%, where p) = S pyis the
probability of the occurrence of ith hashed event.

As an example (Figure 8), take a very non-uniform distri-
bution: the probability of a sample in [0,2'°) is proportional
to its value (the distribution is represented by a slanted line
instead of a horizontal one of the uniform distribution). If
we hash 256 samples together (reducing 16-bit samples to 8
bits), the relative variation is decreased by a factor around
16, making the resulting distribution quite close to uniform.
If we hash 4 K samples together (mix and drop 12 bits), the
resulting 16 different sample values occur practically with the
same probability (around a 64-fold improvement). Here DES
encryption was used for hashing, on 0-padded input data,
and truncated result.

Hashing similarly improves the short-term autocorrela-
tion, even between groups of entries close by. If the input
blocks of the hash get filled up with correlated samples,
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certain blocks occur more, others occur less frequently, so
a correlation between close-by bits leads to non-uniform
distribution of the blocks, that is, there are differences in
the frequencies of occurrences of certain block contents.
As discussed above, the hashing process smoothes out the
distribution of blocks of bits, thereby removing any kind
of autocorrelation among (groups of) samples, in the input
blocks of the hash.
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