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detections decay in a nonlinear fashion as the distance d, between the acoustic signal source and the sensor, is increased.
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1. Introduction

A large and important number of Wireless Sensor Net-
work (WSN) applications are event-driven. For instance,
applications are found in the monitoring of dangerous
environments, detection and classification of individuals
or objects, location of static or tracking mobile targets,
and structural health monitoring systems [1-3]. Unlike
data collection applications, in event-driven applications the
sensor nodes or motes rarely transmit data and their batteries
energy is mainly consumed by intensive signal processing
computations. Rather, under the event occurrences the
motes transmit event packets upstream to the network
data receptacles or sinks. At this point, the application
can perform high-level inferences such as to compute the
location, speed motion, and orientation of mobile or static
targets. Eventually, the application can also make decisions
and via the motes switch on/off alarms or actuators.

Due to that WSN event-driven applications work on
the base of packet transmissions, the event detector and

network failures, false alarm signals, and data packet lost
severally deteriorate the sensors network life-time. In fact,
for a sensor mote data packet transmissions are energetically
the most expensive operations compared against any of the
mote microcontroller operation states: CPU computing or
energy saving [4]. Therefore, event detectors and event-based
routing protocols are crucial WSNs applications services
that must reliably and timely signal with the lowest possible
number of false alarms and transport and deliver event
packets with the highest achievable percentages [5, 6].

In this work a novel events detector algorithm, which
points out the detection of acoustic indoor human activities,
for constrained wireless sensor hardware is presented. The
proposed algorithm computes events on the base of the signal
energy statistics change rate at two instants separated by
(L — 1) samples instead the use of a threshold.

Commonly, the event detector characterisation and
parameters tuning processes are performed off-line in a
general purpose computer system, to set a proper signal
energy threshold value which is employed to compute event



occurrences [1]. Rather, that threshold search is a very com-
plex and time consuming task that hides problems related
to the strong constraints that the current wireless sensor
hardware features such as the CPU computation speed,
memory use availability, sampling rate limits, none hardware
floating point support, and energy consumption concerns.
Therefore, to show the differences that exist between a
general computer system and constrained wireless sensor
hardware domains, the experiments are run for two event
detector implementations, an Octave program executed in
a general purpose computer system by a Matlab kind
mathematical environment tool and a TinyOS hardware-
oriented that is run on a wireless sensor hardware emulator
and an actual sensor mote.

A two-stage experimentation campaign is developed. (i)
A characterisation and tuning processes are run to locate
the event detector parameters configurations that enable
the event detector signals event occurrences from a set of
three acoustic human activities signals (S51), closing a door,
dropping a plastic bottle, and clapping. Due to the lack of
user friendly interface facilities an actual wireless sensor
mote features to debug mote programs, the characterisation,
and tuning process results are reported for the Octave
program and a TinyOS mote emulated, expecting that the
mote emulation behaves closer the actual wireless sensor
hardware. (ii) A validation tests process shows the event
detector performance to detect effectively event occurrences
from signals that belong to the acoustic signal people talking
(8S2). In this case, the performance results are presented for
the two event detector implementations, Octave and TinyOS,
where the event detector execution includes an emulated
node and an actual Micaz sensor mote. Finally, the TinyOS
event detector is integrated in a one-hop sensor network of
Micaz motes, and the detector performance test results are
presented as a function of the distance d that exists between
the acoustic signal source SS2 and the wireless mote.

The structure of this paper is as follows. In Section 2,
the event and event detection terms are defined, and
then the event detection scientific background is reviewed.
Event detection theoretical basis, main hypothesis, and
practical considerations are presented in Section 3. The
characterisation, tuning, and validation test descriptions and
implementation details are commented in Section 4. The
experimental results, characterisation, tuning, and validation
test processes, are presented and discussed in Section 5.
Finally, Section 6 summarises and concludes the present
research work.

2. Background

Throughout the rest of this paper, the event and event detec-
tion terms are employed in a reiterated fashion. Therefore,
we provide their definitions that even though they cannot be
considered as formal, our definitions are based on specific
and qualitative interpretations of the observed input signal
energy behaviors. Then, in the next sections, previous works
in energy estimation and event detection are introduced and
discussed.
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TaBLE 1: Number representation and execution times reported for
the FFT, Wavelets Daub-4, and Daub-8 implementations on the
Mica2 and Tmote Sky motes.

Complex task Execution time
64-point FFT (Mica2 integer values) 52ms [11]

512-point FFT (Mica2 floating point values) 30 seconds [9]
512-point FFT (Tmote Sky integer values) 4 seconds [10]
Wavelet Daub-4 (Tmote Sky floating point) 9 seconds [10]

Wavelet Daub-8 (Tmote Sky floating point) 20 seconds [10]

2.1. Definitions.

Definition 2.1. An event is a significant sudden change in the
sensor signal energy.

Definition 2.2. Event detection is the capability an electronic
system or computing algorithm has to recognise or count
events.

It is assumed in Definition 2.1 that over long-time
periods, in average the sensor signal energy reading output
values experiment minimum changes.

Definition 2.2 refers to the event detector implemen-
tation that is developed as a nondeterministic finite state
automata (NFA) [7].

2.2. Estimators. Event detection strongly relies on the sensor
signal energy estimation that is a function of the performance
and complexity of specific algorithm implementations. In
particular, estimator accuracy demands several hardware
platform requirements such as computing power, memory
space usage, and battery energy expenditure [8].

Roughly, estimation algorithms can be classified into two
big groups: correlation and average based. In this section,
related works are introduced.

2.2.1. Correlation-Based Estimators. The Fast Fourier (FFT)
and Wavelets transforms are widely studied algorithms that
can be used as estimators. Bhatti et al. [9], Skordylis et al.
[10], and Xu [11] developed FFT and Wavelets Daub-4 and
Daub-8 implementations in two representative sensor motes,
the Mica2 [12] and Tmote Sky [13], for data compression
and signal analysis. In Table 1, the algorithms performances
are shown in terms of execution times, data window lengths,
and number representations.

It can be noted that the execution time is mainly function
of two factors: the number of operations developed and
the number representation, integer, or floating point values.
In particular, for an n elements series the FFT algorithm
computational complexity is roughly O(n?) and in the better
of the cases can be optimised to O(log,n/n) operations.
Clearly, both correlation-based algorithms cannot provide
timely energy estimations required for instance by location
or target tracking WSNs applications.

2.2.2. Averaged-Based Estimators. Statistics sliding window
and historic- or cumulative-based algorithms are computa-
tionally efficient and lightweight estimators [1, 14-17]. They
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can compute online average estimations from a number
series with relatively small amount of computing resources.
In a window-based approach, the total M elements series
s; average is approximated averaging subsequences s; C s;
of N elements, where N is defined as the window size
with N < M. The best global average estimation requires
large N values. Therefore, application requirements mostly
lead the window size selection: the Moving Average is an
example of such sort of window-based estimators. In a
historic or cumulative algorithm, the average is estimated by
a weighted sum between the current series value plus the
accumulated or old average estimations. The instantaneous
average estimation is controlled by the weights that are
adjusted to approach at best the actual total average value.
The Exponential Weighted Moving Average or EWMA is an
example of such estimators and there exists a large number of
variants [17].

2.3. Event Detection. Guetal. [1] implemented a WSN appli-
cation for detection and classification of persons, individuals
carrying metals, and moving vehicles. Specifically, threshold-
based acceleration and magnetic and acoustic event detectors
were implemented. To compute online input signal mean
ms, signal energy e;, energy mean m,, energy variance
var,, and energy standard deviation std, estimations, the
detectors utilise the EWMA filter. More particularly, the
acoustic event detector performs intensive point-to-point
comparisons between the microphone output signal energy
es and an adaptive threshold thr,. The thr, is computed as
the sum of the energy mean m, plus the energy standard
deviation std,. If within a detection time period Tp, e; crosses
several times thr,, then an event detection is flagged. In
principle, there exists a stable thr, value that should stand
upon e for long time periods of null acoustic activity.
Meanwhile, e; should cross the thr, for very short time
periods when acoustic events are on the course.

Liang and Wang (2005) [14] reported two WSN event
detectors that do not use a threshold. The first detec-
tor implements two sliding windows that compute the
mean signal energy value for two contiguous time periods
E; = Yplolza-ml” and Ey = 3, |2uiml|®, where z; =
{z1,22,...,2m} is the sensor output signal samples. An event
is signaled if the energies ratio accomplishes the condition
m, = E,/E,+# 1. Rather, the detector effectiveness fails
when the energy signal presents fast changes; therefore a
hybrid fuzzy logic event detector is developed. The hybrid
detector is inputted with the crisp or raw signal energy values
accumulated E; in a fixed time period and the signal energy
ratio m,, values, that the fuzzificator converts in the semantic
rules: mean, weak, and strong. The inference engine applies
IF-THEN rules to compute the consequent that can take the
linguistic values: very weak, weak, medium, strong, and very
strong. Finally, the defuzzifier computes the crisp outputs
that are a fuzzy weighted mean of consequent. Particularly,
an event is signaled when E; and m, produce a very strong
fuzzy weighted consequent mean. It can be easily noted that
this last detector performance boost can have a very elevated
computing cost for the 8-bit wireless mote CPU.

To provide high Quality of Service (QoS) levels and
low latency wireless link reconnections for stream sensitive
applications such as Voice over IP (VoIP) or online video,
Mhatre and Papagannaki (2006) [15] developed, for IEEE
802.11 wireless multichannel Access Points (APs) and mobile
devices, three hand-off mechanisms that rely on continuous
wireless radio Received Signal Strength Indication (RSSI)
signals monitoring. In the first algorithm, a mobile client
scans all its wireless channels to search the AP that exhibits
the instantaneous strongest RSSI levels; once the AP channel
is found, a transition request is triggered and both devices
commit for the data stream route change. Instantaneous RSSI
readings do not guarantee stable wireless links predictions.
Therefore, the second algorithm predicts wireless links on
the base of RSSI mean values. From a three-region wireless
stream throughput versus RSSI mean values map, bad, inter-
mediate, and excellent, it is found that high QoS levels require
network throughputs inside the excellent region; therefore
the algorithm searches to maintain the network throughput
within that region. The future region is predicted on the base
of the change of rate of RSSI mean trends separated by an
(L — 1) samples length. From the comparison between the
RSSI mean trend and the corresponding throughput region
the next region can be computed. Whether the trend presents
a downward behavior, the devices commit to switch the data
stream to the channel with the highest RSSI mean trend. The
last algorithm fits a linear regression model from the RSSI
readings for each AP and computes a prediction of the future
RSSI value region.

3. Signal Energy, thr,, and
Event Detection Algorithm

In our work, the EWMA filter is employed to compute
online microphone signal mean m;, energy mean ., energy
variance var,, and energy threshold thr, estimations in
the same fashion as in [1]. However, our event detector
implementation computes rate changes crg,, on thr, as in
[15] instead of to perform continuous comparisons between
es; and thr,. In the next section, signal energy e, and thr,
computing theoretical basis are explained, and then the
change of rate concept is introduced.

The statistical lightweight algorithm estimators can com-
pute the average value of series with very few computational
resources [16, 17]. In this section, the Exponentially Weighted
Moving Average (EWMA) principles as energy mean and
energy variance estimators [1] and then the event detection
approach are presented.

3.1. The Exponentially Weighted Moving Average. The
EWMA estimator is presented in (1):

mlk] = as[k] + (1 — a)ym,[k — 1], (1)

where s[k] is the current sample of the input signal s, and
m;[k] is the current s average estimation. The weight 0 < a <
1 controls m;, where a small « value gives more importance
to past m; values and therefore more stable estimations are
obtained. On the other hand, large a values produce m



estimations that follow the dynamics of the instantaneous
input signal s values and hence the EWMA output is more
reactive. The EWMA fast convergence can be achieved; if
the signal mean value m; is known in anticipation, then the
EWMA initial condition m,[0] is set to m;. Rather, if the m;
value is unknown, then a thumb rule is to set m,[0] = s[0]
(1, 15, 16].

In Figure 1 top part, the black line draws 20 seconds
of a 2kHz 10-bit resolution people talking signal series s.
In the signal s first section there is approximately an 8-
second silence period, from 0 to 16000 samples. In the signal
s second part there is the people talking period that lasts
around 5 seconds, from 16000 to 25000 samples. In the signal
s final section there is a silence period that lasts around 7
seconds, from 25000 to 39999 samples. Finally, the clear line
shows the signal s EWMA m; values. In this case o = 0.001 is
set to filter the s noise high frequencies with m;,[0] = s[0] set
asin [1].

The signal energy is computed by (2):

es[k] = Is[k] — ms[k]|. (2)
The energy average estimation is obtained from (3):
me[k] = Pes[k] + (1 = p)me[k - 1]. (3)

Then, the energy variance estimation is computed from

(4):
vare[k] = y(es[k] — me[k])* + (1 — y)var[k —1].  (4)

The energy standard deviation is obtained from (5):

std.[k] = +/var.[k]. (5)

Finally, an adaptive energy reference or threshold thr, is
computed from (6) [1]:

thr.[k] = stde[k] + m.[k]. (6)

In Figure 1 lower part, the people talking signal energy
es, EWMA signal energy m,, and energy reference thr, are
presented in black, green, and yellow, respectively. In this
case, four region features can be observed: (1) the signal
energy es, energy m,, and thr, estimations convergence occur
inside the 0 to 6000 samples period; (2) the signal energy
es, M, and thr, estimations of the silence period are shown
inside the 6000 to 16000 samples interval; (3) the 5-second
period of the speech signal energy e;, m,, and thr, estimations
runs from 16000 to 25000 samples; (4) finally, the silence
signal energy es, m,, and thr, estimations are plot for the
25000 to 39999 samples period. In this case, the weights
B =7y =0.02used in (3) and (4) are chosen in a manner that
m, and var, present large variations when the instantaneous
es changes are significant and therefore the event detector
algorithm [1] can observe them easily.

An important observation is that an implementation of
the (1), (2), (3), (4), and (5) requires five double word vari-
ables. Meanwhile, an enough accurate FFT implementation
requires at least one set of N = 256 input samples data of
one word (16-bits), plus operations RAM memory.
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3.2. Event Detection Computation. We experimentally have
found that the EWMA coefficients tuning, to set a threshold
thr, that achieves the features described in [1], is a very
complex and time consuming process. Therefore, in a similar
manner as in [15], we avoid the threshold thr, search and
compute events on the threshold change rate values (7):
thre[k] — thr[k — L+ 1]
Clihr = . (7)
L

Equation (7) defines a straight line that lies on thr, and
has slope parameter 1/L with its initial and final points,
respectively, located at thr,[k — L + 1] and thr,[k] separated
by a distance of (L — 1) samples.

In this manner under ideal conditions, an event is
evaluated on the base of the following logic.

(1) It is expected that for small signal energy variations,
the difference (thr.[k — L + 1] — thr.[k]) is zero.

(2) For large variations of the signal energy, the cri,
value must be different of zero.

Similarly as in the threshold approach, an event is
signaled whether inside a T, detection period, the condition
criyr # 0 is achieved at least once. Note that when L — 0, the
detector performs large number of cry, computations and
behaves like the threshold based event detection algorithms.
On the other hand, when L — o, less frequent crin,
computations are performed.

Unfortunately in real world environments, thr, fluctuates
in time and cry,, swings around the zero value. Therefore, a
tolerance interval I, = [—tol, +tol] ought to be introduced
on the cry,, changes and the occurrence of an event is
evaluated by (8):

1, if |crgy| > tol,

event (Tp) = <| (8)

0, otherwise,

where Tp = M - L seconds and M is the times number at
which the detector must compute the occurrence of events.

It can be observed, from (7) and (8), that the detector
sensibility can be controlled by the tolerance I, and the criy,
slope 1/L parameters.

(1) o1 is the maximum swing limit allowed on the crn,
change rate that is a function of the threshold thr,
variations. From here, low energy intensity events
will produce slight cr, variations that can be more
easily detected by narrow I, values. Rather, also
some noise background energy values can produce
large cryy oscillations that will cross very narrow
Iio) values without difficulty and therefore some
nuisances can be signaled.

(2) Within a Tp period, the maximum number of crn,
computations is bounded by the L period. For
short L values the detector must more frequently
compute Cryy. In this manner, events from fast signal
energy variations can be more easily detected. On
the other hand, the detector must perform less cry,
computations for large L values. Rather, some fast
signal energy events may not be detected.
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Therefore, the I, and L selection is a trade-off based
on the application requirements. Once provided event
detection theoretical basis and main hypothesis, in the
following section specific detector implementation details
and experimental performance results are presented.

4. Event Detector Implementation,
Characterisation, Tuning, and Validation
Test Descriptions

Real world event detectors can signal False Alarms (FAs) or
True Alarms (T As) events [18, 19].

(i) FAs are unwanted nuisances produced by sudden
noise background changes. On one hand, FAs rep-
resent expensive radio transmissions that reduce
importantly the mote life-time. On the other hand,
FAs introduce system state uncertainty to the WSNs
application.

(ii) T'As are events generated, for instance, by environ-
ment intrusions or system failures that therefore must
be signaled timely as much as possible.

For a WSN application, TAs and FAs are qualitatively
indistinguishable. Therefore, a characterisation and tuning
process is run to locate the detector parameters config-
urations that enable the event detector signals minimum
number FAs and maximum T'As events.

In this section we present the following two phases
experimental procedure.

(1) Characterisation and tuning processes. FA and TA
events are plotted for several event detector param-
eters Iyo] and L ranges. Particularly, a set SS1 of three
acoustic human activities is considered. Then, from
the individual parameter ranges that produce the
minimum FA and maximum TA events number,
common I, and L ranges are merged.

(2) Validation tests process. It is measured the event
detector capability to signal events from an acoustic
signal set (SS2) that belongs to the people talking
activity, for diverse detector parameters pairs {Iio}, L}
selected from the common I, and L values.

Note that the acoustic signal signature recognition is
out of the characterisation and the validation tests pro-
cesses scope that just points out the detection of acoustic
events.

Two event detector implementations are developed: an
Octave (OCT_IMP) which is a Matlab style program and a
TinyOS (TOS_IMP) [20] which the actual mote hardware
executes. As the actual mote lacks of interface facilities to
debug the sensor programs behaviors, the TOS_IMP charac-
terisation and tuning experiment outcomes are drawn from
AVRora [21], a motes hardware emulator. The validation
tests are run for the OCT_IMP and TOS_IMP where the
execution on an emulated and actual mote hardware is
included.

4.1. Experimental Setup Elements. In this section, a descrip-
tion is given of the signals sets, SS1 and S$S2, employed in
the event detector characterisation, tuning process, and vali-
dation tests. Then, the event detector implementation details
and the event detector execution environment differences are
exposed.

4.1.1. The SS1 and SS2 Signal Set Features. The events
are computed from actual acoustic sensor signal data:
characterisation SS1 = {s; = closing a door,s; =
dropping a plasticbottle, s3 = clapping}; see Figures 2, 3, and
4 respectively. Test SS2 = {s = people talking}; see Figure 1.
SS81 and SS2 are 20-second records of 2 kHz sample data rate
acquired from the Micaz microphone, stored in the external
FLASH memory and eventually downloaded in a PC. The
data is recorded in a laboratory environment with the signal
source located at 1 m from the mote, and the microphone
gain is set to 0 units.

4.1.2. The Event Detector Implementation Description.
Figure 5 shows the event detector as a 6-state Nondeter-
ministic Finite State Automata (NFA) and the particular
implementation details follow.

(1) Start state. The EWMA estimator coefficients («, 3,
and yp), initial conditions, and event detector con-
stants (Tp, L, I, etc.) are initialized. In particular,
Table 2 shows the EWMA and Tp values that are set
asin [1].

(2) Getnext sample and process state. The current k sensor
signal sample s is read and then the m;, e, m,, std,,
var, and thr, values are computed by (1), (2), (3),
(4), (5) and (6). Meanwhile the L period has not
elapsed, the next k + 1 signal sample is acquired and
processed.

(3) Compute cry, state. Once an L period has elapsed,
the cryy is evaluated by (7). If |crge| > tol (8),
then a cry, changes counter is incremented. Mean-
while the Tp period is not reached, the machine
acquires and processes signal samples for another L
period.

(4) Compute event state. After a Tp = M - L period has
elapsed, if the cry,, changes counter is nonzero, then
an event flag is activated.

(5) Signal event state. Whether the event flag is active,
the event detector signals the occurrence of an
event. Particularly, in the TOS_IMP event detector
implementation a data packet is issued.

(6) Clear detector counters state. The event detector cr,
changes counter and other auxiliary counters are set
to zero, and then a new Tp period is started.

4.1.3. OCT_IMP Execution Environment Description. The
OCT_IMP event detector is executed in a Linux desktop PC.
In general terms, the event detector reads and processes
one after the other sensor samples (see Figure5). This
procedure is continuously repeated until the last sensor
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FIGURE 1: (a) In black color the people talking signal series s and (b)
in clear color the signal EWMA m; values for « = 0.001.
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FIGURE 2: (a) In black the close door input signal series s; € SS1 and
in green the EWMA mean m, estimation. (b) In black the s; energy,
in green the energy EWMA mean ., and in yellow the energy thr,
values.

data sample is achieved. In particular, the 2kHz sensor
samples are loaded in the PC RAM memory from where
the event detector reads the data. In this manner, the
algorithm operations are isolated from the acquisition data
sample rate, interruption handle, and operations execution
latencies issues, for instance. On the other hand, the event
detector floating point operations are not limited by the
data type precision representation featured by the execution
environment and the programming language.
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FIGURE 3: (a) In black the bottle dropped input signal series s, €
SS1 and in green the EWMA mean m;, estimation. (b) In black the
s, energy, in green the energy EWMA mean m,, and in yellow the
energy thr, values.
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FIGURE 4: (a) In black the claps input signal series s3 € SS1 and in
green the EWMA mean m; estimation. (b) In black the s; energy,
in green the energy EWMA mean m,, and in yellow the energy thr,
values.

4.1.4. TOS_IMP Execution Environment Description. AVRora
[21] is a WSNs simulator with accuracy at mote CPU
bit and clock cycle level. In the TOS_IMP implementation,
1.3kHz sample data rate acquisitions are assumed. To do
this, AVRora reads from a text file the sensor data samples
and the time between two consecutive sensor readings. On
one hand, every sensor sample is sequentially exposed and
hold on the corresponding virtual microcontroller ADC
port. On the other hand, the time is translated into virtual
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L
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Compute
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FIGURE 5: Six states acoustic event detector Nondeterministic Finite
State Automata (NFA). Start state: the event detector constants are
initialized. Get next sample and process state: the current k signal
sample s is acquired and m;, e, m,, var,, std,, and thr, are computed.
Compute cry, state: the |cry,| > tol condition is evaluated. Compute
event state: the events occurrence is evaluated. Signal event state:
event occurrences are signaled. Clear detector counters: detector
counters are cleared.

microcontroller CPU clock cycles that once elapsed then the
next sensor data sample is introduced. In a similar fashion,
the emulated microcontroller interruptions are driven in
terms of the virtual microcontroller CPU cycles. In our
case, AVRora reads, introduces, and holds the 2 kHz sensor
samples every 3686 virtual microcontroller CPU cycles and
the interruptions are generated every 5671 cycles. Even when
the Micaz mote can sample data faster, the software floating
point computations introduce large overheads that limit
the data acquisition to a 1.3 kHz sampling rate; otherwise
potential data race-condition conflicts can occur.

5. Experimental Results

As stated in Section 3, the event detector sensibility can
be controlled by the two detector parameters tol and
L. To reduce the event detector characterisation process
complexity the event detections, FAs and TAs, are shown
in a two-step procedure: (1) the tol parameter is varied
maintaining L fixed, and (2) the tol parameter is fixed and
the L parameter is varied.

In all the experiments, Tp = 1.28 seconds and in
principle the events signaled maximum number is 15 for the
20 seconds signal records duration.

5.1. OCT_IMP Event Detector Behavior as Function of the tol
Parameter. Figure 6 shows events, FAs and T As, signaled by
the OCT_IMP event detector implementation varying the tol
parameter and L = 160 milliseconds for the characterisation
signals set SS1. On the x-axis, the tol values range from
0.000001 to 0.014, in 0.00005 step unit increments. On the y-
axis are drawn the total events, FAs and T As, signaled within
the 20-second signal records duration.

From the event detector execution results, three event
regions can be observed: Region I, with both events, FAs
and T'As, signaled. Region II, with only TAs events signaled.

Octave detector, close door input signal s;
T

5 T T T
w4 i E
g 3+ ]
2+ -
e ] .
0
0 0.002 0.004 0.006 0.008 0.01
Tolerance tol
(a)
s Octave detector, bottle dropped input signal s,
. 4 - T T T T i
S 3F J
S 2r .
B L M — — — — — = ——mmmmm e A
0
0 0.002 0.004 0.006 0.008 0.01
Tolerance tol
(b)
5 Octave detector, claps input signal s3
. 4 7777777 |7 o T T T i
> --- b
Mo [, . .
0
0 0.002 0.004 0.006 0.008 0.01

Tolerance tol

+ False alarms (FA)
-—~ True alarms (TA)

(c)

FIGURE 6: OCT_IMP event detector characterisation as function of
tol and L = 160 milliseconds. (a) the events signaled for the signal
s1 € SSI. (b) the events signaled for the signal s, € SSI. (c) the
events signaled for the signal s; € SSI.

TaBLe 2: EWMA «, f, and y coefficients and event detector
detection period Tp constant values.

Constant name Value

o 0.001

B 0.02

y 0.02

Tp 1.28 seconds

Region 111, neither FAs nor TAs events are signaled. Table 3
summarizes the event regions and their respective tol
intervals for the signals set SS1.

5.1.1. OCT_IMP Tuning for the tol Value. From the data in
Figure 6 and Table 3, it is clear that to signal effectively
TA events from the signals sets SS1, an event detector
implementation ought to work with tol values within the
Region II. Therefore, a common I, interval can be merged
for the signals set SS1 in the following manner:

{tol} = (0.00045,0.00735) N (0.00125,0.00915)
N (0.00055,0.00745) 9)
= (0.00125,0.00735).

More particularly, it can be noted that a tol = +0.003
is one value that enables the event detector signals the
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TaBLE 3: OCT_IMP tol interval event regions for the acoustic test signals SS1.

tol intervals

Characterisation signal SS1 Region Region Region

I 1I 11
1 (0.000001, 0.00045) (0.00045, 0.00735) (0.00735, 0.01)
$ (0.000001, 0.00125) (0.00125, 0.00915) (0.00915, 0.01)
S3 (0.000001, 0.00055) (0.00055, 0.00745) (0.00745, 0.01)

TaBLE 4: OCT_IMP L interval event regions for the acoustic test
signals SS1.

L intervals in ms

Characterisation Reei Reei Reei

signal SS1 egion egion egion
I 11 111

s (40,53.3)  (53.3,320.0) (426.7,0)

5 (40,53.3)  (53.3,320.0)  (426.7,0)

$3 (40, 106.7)  (106.7, 426.7) (640, c0)

maximum T'A events number for the periodic acoustic signal
s3 € S8S1.

5.2. OCT_IMP Event Detector Behavior as Function of the L
Parameter. In a similar manner as in the previous section,
the OCT_IMP event detector behavior is presented as function
of an L values range and tol = =+0.003. Figure 7 shows
the events, FAs and TAs, signaled. On the x-axis, the L
values run, from 15 to 700 milliseconds, in two L increments
partitions. Inside the x-axis first partition, from 15 to 160
milliseconds, the L increments are steps of Tp/8 +2 - n =
1.28/8 + 2 - n seconds with n = {0,2,...,18}. It gives Criny
computations that vary from 44 to 8 times inside a T period.
In the x-axis second partition, from 183 to 700 milliseconds,
L increments are steps of Tp/m = 1.28/m seconds with
m = {3,4,5,6,7}. In this case, the cry, computations vary
from 7 to 3 times inside a T period. On the y-axis, for every
L value the events signaled total number is drawn for the 20
seconds signals set SS1 duration.

The three event regions and the respective L intervals are
summarised in Table 4.

5.2.1. OCT_IMP Tuning for the L Value. From Region II, L =
[106.7,320.0] milliseconds is the common interval computed
in a similar fashion as in Section 5.1 for the common {tol}
interval. It in principle means that any 106.7 < L < 320.0
milliseconds value enables the event detector signals events
from the acoustic signals set SS1.

5.3. TOS_IMP Event Detector Behavior as Function of the tol
Parameter. Figure 8 shows the events, FAs and T'As, signaled
by the TOS_IMP event detector as function of the tol value for
the signals set SS1. On the x-axis, tol ranges from 0.0001 to
0.01285 in 0.00005 step units. On the y-axis, for every tol
value the events’ signaled total number is drawn for the 20
seconds signal records duration.
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FIGURE 7: OCT_IMP event detector behavior as function of detector
parameters tol = +0.003 and L. (a) the events signaled for the signal
s; € SSI. (b) the events signaled for the signal s, € SSI. (c) the
events signaled for the signal s3 € SSI1.

Table 5 shows the three event regions for the respective
tol intervals of the characterisation signals set SS1.

5.3.1. TOS_IMP Tuning for the tol Value. From Region II, it is
found that {tol} = (0.0047,0.00885) is the common interval
that allows the detector signals events for the signals set SS1.
In particular, tol = +0.007 is one value that allows to signal
the most T'A events for the signal s3 € SS1.

5.4. TOS_IMP Event Detector Behavior as Function of the L
Parameter. In Figure 9, the TOS_IMP event detector behavior
is presented as function of an L range values and tol =
+0.007. On the x-axis, L ranges from 15 to 300 milliseconds
and the increments are distributed in the same fashion as in
Section 5.2 is explained. On the y-axis, the events signaled
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TABLE 5: TOS_IMP tol interval event regions for the acoustic test signals SS1.

tol intervals

Characterisation signal SS1 Region Region Region

I 1I 111
1 (0.0001, 0.0007) (0.0007, 0.00885) (0.00885, 0.014)
S (0.0001, 0.00465) (0.00465, 0.01115) (0.01115,0.014)
3 (0.0001, 0.0047) (0.0047, 0.01275) (0.01275, 0.014)

Emulated Micaz mote detector, close door input signal s;

Events
O =W R UGN

0 0.002 0.004 0.006 0.008 0.01 0.012

Tolerance tol
(a)

Emulated Micaz mote detector, bottle dropped input signal s,

5 T T T T
» 4
g
>
|
0
0 0.002 0.004 0.006 0.008 0.01 0.012
Tolerance tol
(b)
5 Emulated Micaz mote detector, claps input signal s3
. 4- 77777 |777777|7777777| 77777 \l T |-
% g e ‘\ 4
g 2 ]
0 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012

Tolerance tol

+  False alarms (FA)
--— True alarms (TA)

(c)

Figure 8: TOS_IMP emulated mote event detector behavior as
function of tol and L = 160 millissecond. (a) the events signaled for
the signal s; € SS1. (b) the events signaled for the signal s, € SS1.
(c) the events signaled for the signal s; € SS1.

total number is plotted for the 20 seconds signal records
duration. Table 6 summarises the respective three L event
regions.

5.4.1. TOS_IMP Tuning for the L Value. From Region II, it is
found that L = (106.666, 160) milliseconds is the common
interval that enables the detector signaling correctly the
events from the signals set SS1.

As a comparison manner, Table 7 summarises the tol
and L intervals obtained from the characterisation processes.
Particularly, in the Range size column, a measurement of the
interval lengths is presented, for the OCT_IMP and TOS_IMP
emulated node event detector implementations, respectively.

It can be observed, on the one hand, that the OCT_IMP
tol interval is 1.4 times wider than the TOS_IMP tol interval
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T T
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FiGURE 9: Emulated TOS_IMP event detector behavior as function of
detector parameters tol = =0.007 and L. (a) the events signaled for
the signal s; € SS1. (b) the events signaled for the signal s, € SS1.
(c) the events signaled for the signal s; € SSI.

and is left shifted by 0.00345 units. On the other hand,
the OCT_IMP L interval is 3.9 times wider and includes
completely the TOS_IMP L values interval.

5.5. Validation Tests. In this section, the event detector
capability is measured to signal events from acoustic signals
other than the signals set SS1 for several event detector
parameter pairs pp; = {{tol},L}. Particularly, the event
detector, OCT_IMP and TOS_IMP, is exposed to the people
talking signal SS2 plotted in Figure 1.

5.5.1. Evaluation Assumptions. In our sample tests, events are
considered TAs if the event detector produces signals inside
the time period when the acoustic signal of interest occurs.
Otherwise, the events are considered FAs. More specifically,
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TABLE 6: TOS_IMP L interval event regions for the acoustic test signals SSI.

L intervals in ms

Characterisation signal SS1 Region Region Region
1 1I 111
51 (15.238, 17.77) (17.77, 160) (160, )
S (15.238, 106.66) (106.66, 182.857) (182.857, )
3 (15.238, 106.666) (106.666, 213.333) (213.333, )
TABLE 7: Detector tol and L intervals for the 0CT_IMP and TOS_IMP emulated mote event detector implementations.

Detector implementation tol Ra-nge L Ra.nge

size (ms) size
0CT_IMP (0.00125,0.00735) 0.0061 [106.7,320.0] 213.3ms
TOS_IMP emulated hardware (0.0047,0.00885) 0.00415 (106.666, 160.0) 54.666 ms

we expect that the detector only signals T'A events inside the
speech signal period, from 16000 to 25000 samples, with a
theoretical maximum of 5 TAs for a Tp = 1.28 seconds
period. In this manner, the successful detection percentage
is in every case computed with respect the maximum signals
number which has assigned the 100%.

5.5.2. Evaluation Special Cases. For the TOS_IMP implemen-
tation case, the event detector is executed on an emulated
sensor mote and on an actual Crossbow/Berkeley Micaz
mote. Finally, the TOS_IMP event detector is integrated in a
one-hop wireless sensor network of Micaz, and the events are
presented as a function of the distance d that exists between
the acoustic signal SS2 and the Micaz mote.

5.5.3. OCT_IMP Event Detector Validation Tests. The OCT_IMP
event detector performances are shown in Table 8, for the
signal SS2 and the detector parameters pairs: pp; = {tol =

+0.003, L 160 milliseconds}, pp, = {tol = =0.007,
L = 160 milliseconds}, pps = {tol = =0.003,L
320 milliseconds} and pps = {tol = =0.007,L

320 milliseconds}.

ppi: the event detector computes one cry, change for
three consecutive T periods inside the speech period
of the signal set SS2. Therefore, the detector signals
three events that are counted as T'As giving a 60%
successful detection.

pp>: the event detector computes cry,, = 0 changes for
the whole signal SS2 period duration. Therefore,
neither FA nor TA events are signaled and a 0%
successful detection is obtained. This behavior is
expected, becouse tol = +0.007 is one among the
more restrictive values inside the merged tol set. That
is, the tolerance interval is pretty ample that cry,y can
not cross it, even though the signal energy presents
periodic fluctuations as in the case of the signal s3 €
SS1; see Figure 6.

pps: the detector computes one cry, change inside the
speech period of the signal set SS2. Therefore, only

TaBLE 8: OCT_IMP event detector performance for the signal set SS2.

Detector event signals

Successful
Detector parameters values )
FA TA detection
%
{tol = +0.003,L = 160 ms} 0 3 60
{tol = +£0.007,L = 160 ms} 0 0 0
{tol = +0.003,L = 256 ms} 0 1 20
{tol = +£0.007,L = 256 ms} 0 0 0

one event is signaled and counted as T'A giving a 20%
successful detection.

ppa: the detector computes cryy = 0 changes within all
the signal SS2 period duration; therefore neither FA
nor TA events are signaled, giving a 0% successful
detection. This result is expected, as the detector
parameter values tol and L are the most restrictive
for any signal from the characterisation set SS1; see
Figures 6 and 7.

5.5.4. TOS_IMP Emulated Sensor Mote Validation Tests. In
Table 9, the TOS_IMP event detector-emulated mote execu-
tion performances are presented for the detector parameter
pairs: pp; = {tol = =0.003,L = 160 milliseconds} and
pp> = {tol = £0.007, L = 160 milliseconds}.

ppi: inside the speech period of the signal set SS2, there are
5 events signaled and counted as T'As giving a 100%
successful detection.

pp»: inside the speech period of the signal set SS2, there are
3 events signaled and counted as T'As giving a 60%
successful detection.

Additionally, Table 10 shows the event detector energy
consumptions that AVRora predicts for the emulated Micaz
mote. It can be seen that for both parameter pairs, pp; and
pp2, the CPU computations and transmission operations
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TaBLE 9: TOS_IMP emulated mote event detector performances for
the event detections from the signal set SS2.

Detector event signals

Successful
Detector parameters values )
FA TA detection
%
{tol = +0.0055,L = 160 ms} 0 5 100
{tol = =0.007,L = 160 ms} 0 3 60

TaBLE 10: TOS_IMP emulated mote event detector energy consump-
tions for the event detections from the signal set SS2.

Energy
Detector parameter values Consumption (mJoules)
CPU Radio Tx
{tol = +0.0055,L = 160 ms} 438.189 575.78
{tol = +0.007, L = 160 ms} 438.607 575.686

TaBLE 11: TOS_IMP actual Micaz mote event detector perfor-
mances for the event detections from the signal set SS2.

Detector event signals

Successful
Detector parameters values )
FA TA detection
%
{tol = +0.0055,L = 160 ms} 0 3.5 70
{tol = +0.007,L = 160 ms} 0 3.7 80

energy expenditures do not present significant differences.
On one hand, we think that this is because the L period
length is equal for both event detector parameter settings. On
the other hand, there is not a large difference on the packets
number the mote transmits for the whole signal period.

5.5.5. TOS_IMP Actual Sensor Mote Hardware Validation Tests.
Table 11 presents the TOS_IMP event detector performances
for an actual Micaz mote with the detector parameter pairs:
pp1 = {tol = £0.0055,L = 160 milliseconds} and pp, =
{tol = £0.007,L = 160 milliseconds}, where the results are
averaged over events detected from ten trial SS2 replays.
From these last results and the presented in Tables 8 and
9, we can observe that the emulated mote event detector
behaves closer to the actual Micaz mote detector than to the
OCT_IMP implementation, for the parameters pairs pp; and

ppa.

5.5.6. TOS_IMP Event Detector Performance for a One-Hope
WSN of Micaz. In the present section, the TOS_IMP event
detections are presented for a one-hop WSN of Micaz
motes. The network consists of one mote data sink and one
sensor mote deployed along a passage at different distances
d from the test acoustic source SS2. The experiments are

run for the detector parameter pairs: pp; = {tol =
+0.0055,L = 160 milliseconds} and pp, = {tol
+0.007,L = 160 milliseconds}. In both cases, the event

detector continuously computes event occurrences, whether
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FIGURE 10: Micaz event detector average FAs, TAs signaled events
and cry,y changes per packet as function of the distance for the
speech period of the signal set SS2. (a) event detector performance
for the parameters {tol = +0.0055, L = 160 milliseconds}. (b)
event detector performance for the parameters {tol = =*0.007,
L = 160 milliseconds}.

an event is detected, the sensor mote issues a packet that
contains the mote ID, and the cryg, changes counted into the
respective Tp period. The event detections are averaged from
the received event packets and cry,, changes for ten acoustic
signal SS2 replays.

For the detector parameters pair pp;, see Figure 10(a).
It can be noted that the computed event packets average
number is produced only by TAs inside the range of 3 to
4 along the twenty-three meters of distance d. Meanwhile,
the reported per packet average crg,, changes number ranges
from 2 to 5. Moreover, within the distance d range 1 to
8 meters, the average cry, is larger than the average event
packets number and this condition is inverted for distances
equal or larger to nine meters.

In the Figure 10(b), the event detector performances
are presented for the detector parameters pair pp,. Like in
the detector parameters pair pp; case, the detector events
packets are only produced by T'As. Unlike, the case for the
detector parameters pair pp;, the average event packets and
crehy changes number is significantly decreased from 4 to 1
along all the twenty-three meters of distance, as the sensor
mote, and the acoustic signal source distance d is increased.
Moreover, the average event packets number is larger than
the average cry, changes number along the twenty-two
meters of distance d.
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TABLE 12: Acoustic target detection algorithms performances [18].

Detector Energy cost Accuracy False positive rate
Threshold 2.71 mJ 70.5% 25.0%
High pass 13.95 m]J 84.0% 16.0%
FFT 49.12 m]J 100.0% 0.0%

As a final note, Lorincz et al. [18] reported three outdoors
acoustic detectors, threshold, high-pass filter and FFT based,
to detect marmot calls. The detectors accuracy is measured
in terms of True detections (T'As) and False positive (FAs)
rate percentages, and the energy consumptions are computed
from data windows of 512 data. The performance results
obtained by the detectors are reproduced in Table 12. In
particular, the sensor mote is based on the iMote2 platform
which features a Marwell PXA271 XScale processor and can
run at several frequencies ranges from 13 and 416 Mhz.

Though the environments conditions are different and
direct comparisons may not be applied, It can be observed
that our event detector does not signal FAs for the acoustic
signals of interest with respect to the threshold-based
detector. Moreover, the change rate event detector performs
better than a high-pass-based detector. Finally, it is clear that
we can not compare our event detector against the FFT that
additionally can identify the target signature.

With respect to the energy consumptions, the mote emu-
lator estimates that our event detector consumes a total CPU
energy amount of 438.189 m] for the whole $52 duration. If
in the 20-second signal period there are 50.781 subperiods of
512 samples, then the energy consumption for one subperiod
is 8.6290mJ. It means that our detector has an energy
consumption performance which is between the event
detector threshold and high-pass filter based; see Table 12.

6. Conclusions and Future Research

An events detection algorithm for constrained wireless sen-
sor hardware has been presented. The events are computed
from the change of rate of two signal energy statistics values
separated by an (L — 1) samples.

Two process results, (a) the event detector characterisa-
tion and tuning and (b) validation tests, are reported for
two detector implementations, an Octave and a TinyOS.
The characterisation and tuning process searches event
detector parameter configurations that enable the reliable
event detection from three acoustic human activities signals:
closing a door, dropping a plastic bottle, and clapping. The
validation tests demonstrate the detector capability-to-signal
events from other acoustic sources, in our case the events
from people talking signals.

The validation test results show that both event detec-
tor implementations, Octave and TinyOS which included
emulated and an actual Micaz mote, succeed to detect the
events from the people talking signal. Moreover, the TinyOS
emulated mote approximated closer to the actual Micaz
hardware performances. The results also included the event
detector integration in a one-hop WSN of Micaz. In this case,
we show that the events decay in a nonlinear fashion when

EURASIP Journal on Embedded Systems

the distance d between the acoustic signal source and the
mote is increased.

6.1. Future Research Work. In the current TinyOS event
detector implementation, the parameter tol is set to a fixed
value. As future work, we plan to develop an adaptable event
detector which modifies on the fly tol, according to the
WSN application requirements, packet transmission rates, or
energy consumptions.
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