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The recently proposed reactive processing architectures are characterized by instruction set architectures (ISAs) that directly support
reactive control fow including concurrency and preemption. These architectures provide efficient execution platforms for reactive
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Another key quality of the reactive architectures is that they have very predictable timing properties, which make it feasible
to analyze their worst-case reaction time (WCRT). We present an approach to compile programs written in the synchronous
language Esterel onto a reactive processing architecture that handles concurrency via priority-based multithreading. Building
on this compilation approach, we also present a procedure for statically determining tight, safe upper bounds on the WCRT.
Experimental results indicate the practicality of this approach, with WCRT estimates to be accurate within 22% on average.
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1. INTRODUCTION

The programming language Esterel [1] has been designed for
developing control-dominated reactive software or hardware
systems. It belongs to the family of synchronous languages
[2], which have a formal semantics that abstracts away run-
time uncertainties, and allow abstract, well-defined, and
executable descriptions of the application at the system level.
Hence these languages are particularly suited to the design of
safety-critical real-time systems. To express reactive behavior,
Esterel offers numerous powerful control flow primitives,
in particular concurrency and various preemption opera-
tors. Concurrent threads can communicate back and forth
instantaneously, with a tight semantics that guarantees
deterministic behavior. This is valuable for the designer, but
also poses implementation challenges.

Besides being compiled to C and executed as software,
or being compiled to VHDL and synthesized to hardware,
Esterel can be executed on a reactive processor [3]. These
processors directly support reactive control flow, such
as preemption and concurrency, in their instruction set
architecture (ISA). One approach to handle concurrency is
multithreading, as implemented in the Kiel Esterel processor
(KEP). The KEP uses a priority-based scheduler, which

makes threads responsible to manage their own priorities.
This scheme allows to keep the scheduler very light-weight.
In the KEP, scheduling and context switching do not cost
extra instruction cycles, only changing a thread’s priority
costs an instruction. One challenge for the compiler is to
compute these priorities in a way that on the one hand
preserves the execution semantics of Esterel and on the other
hand does not lead to too many changes of the priorities,
since this would decrease the execution speed. We have
developed a priority assignment algorithm that makes use of
a special concurrent control flow graph and has a complexity
that is linear in the size of that graph, which in practice tends
to be linear in the size of the program.

Apart from efficiency concerns, which may have been
the primary driver towards reactive processing architectures,
one of their advantages is their timing predictability. To
leverage this, we have augmented our compiler with a timing
analysis capability. As we here are investigating the timing
behavior for reactive systems, we are specifically concerned
with computing the maximal time it takes to compute a
single reaction. We refer to this time, which is the time from
given input events to generated output events, as worst-case
reaction time (WCRT). The WCRT determines the maximal
rate for the interaction with the environment.
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There are two main factors that facilitate the WCRT anal-
ysis in the reactive processing context. These are on the one
hand the synchronous execution model of Esterel, and on
the other hand the direct implementation of this execution
model on a reactive processor. Furthermore, these processors
are not designed to optimize (average) performance for
general purpose computations, and hence do not have a
hierarchy of caches, pipelines, branch predictors, and so
forth. This leads to a simpler design and execution behavior
and further facilitates WCRT analysis. Furthermore, there
are reactive processors, such as the KEP, which allow to fix
the reaction lengths to a predetermined number of clock
cycles, irrespective of the number of instructions required to
compute a specific reaction, in order to minimize the jitter.

We here present a WCRT analysis of complete Esterel
programs including concurrency and preemption. The anal-
ysis computes the WCRT in terms of KEP instruction
cycles, which roughly match the number of executed Esterel
statements. As part of the WCRT analysis, we also present an
approach to calculate potential instantaneous paths, which
may be used in compiler analysis and optimizations that go
beyond WCRT analysis.

Thus this paper is concerned with both the compilation
and the timing analysis of Esterel programs executed on mul-
tithreaded reactive processors. Previous reports presented
earlier results in both fields [4, 5]. This paper extends and
updates these reports, and represents the first comprehensive
description of these two closely interrelated areas. Further
details can be found in the theses of the first author [6, 7].

In the following section, we consider related work. In
Section 3, we will give an introduction into the synchronous
model of computation for Esterel and the KEP. We outline
the generation of a concurrent KEP assembler graph (CKAG),
an intermediate graph representation of an Esterel program,
which we use for our analysis. Section 4 explains the
compilation and Section 5 represents the algorithm for the
WCRT analysis. Section 6 presents experimental results that
compare the WCRT estimates with values obtained from
exhaustive simulation. The paper concludes in Section 7.

2. RELATEDWORK

In the past, various techniques have been developed to
synthesize Esterel into software; see Potop-Butucaru et al. [8]
for an overview. The compiler presented here belongs to the
family of simulation-based approaches, which try to emulate
the control logic of the original Esterel program directly,
and generally achieve compact and yet fairly efficient code.
These approaches first translate an Esterel program into
some specific graph formalism that represents computations
and dependencies, and then generate code that schedules
computations accordingly. The EC/Synopsys compiler first
constructs a concurrent control flow graph (CCFG), which
it then sequentializes [9]. Threads are statically interleaved
according to signal dependencies, with the potential draw-
back of superfluous context switches; furthermore, code
sections may be duplicated if they are reachable from
different control points. The SAXO-RT compiler [10] divides
the Esterel program into basic blocks, which schedule each

other within the current and subsequent logical tick. An
advantage relative to the Synopsis compiler is that the
SAXO-RT compiler does not perform unnecessary context
switches and largely avoids code duplications; however, the
scheduler it employs has an overhead proportional to the
total number of basic blocks present in the program. The
grc2c compiler [11] is based on the graph code (GRC) format,
which preserves the state-structure of the given program and
uses static analysis techniques to determine redundancies in
the activation patterns. A variant of the GRC has also been
used in the Columbia Esterel compiler (CEC) [12], which
again follows SAXO-RT’s approach of dividing the Esterel
program into atomically executed basic blocks. However,
their scheduler does not traverse a score board that keeps
track of all basic blocks, but instead uses a compact encoding
based on linked lists, which has an overhead proportional to
just the number of blocks actually executed.

In summary, there is currently not a single Esterel
compiler that produces the best code on all benchmarks, and
there is certainly still room for improvements. For example,
the simulation-based approaches presented so far restrict
themselves to interleaved single-pass thread execution, which
in the case of repeated computations (“schizophrenia” [13])
requires code replications.

We differ from these approaches in that we do not
want to compile Esterel to C, but instead want to map
it to a concurrent reactive processing ISA. Initial reactive
ISAs did not consider full concurrency [14, 15] and will
not be discussed further here. Since then, two alternatives
have been proposed that do include concurrency, namely
multiprocessing and multithreading.

The multiprocessing approach is represented by the
EMPEROR [16], which uses a cyclic executive to implement
concurrency, and allows the arbitrary mapping of threads
onto processing nodes. This approach has the potential for
execution speed-ups relative to single-processor implemen-
tations. However, their execution model potentially requires
to replicate parts of the control logic at each processor. The
EMPEROR Esterel compiler 2 (EEC2) [16] is based on a
variant of the GRC, and appears to be competitive even for
sequential executions on a traditional processor. However,
their synchronization mechanism, which is based on a three-
valued signal logic, does not seem able to take compile-time
scheduling knowledge into account, and instead repeatedly
cycles through all threads until all signal values have been
determined.

The multithreading approach has been introduced by
the Kiel Esterel processor family and has subsequently been
adapted by the STARPro architecture [17], a successor of the
EMPEROR. The compilation for this type of architecture
is a subject of this paper. In some sense, compilation onto
KEP assembler is relatively simple, due to the similarities
between the Esterel and the KEP assembler. However, we do
have to compute priorities for the scheduling mechanism of
the KEP, and cannot hard-code the scheduling-mechanism
into the generated code directly. Incidentally, it is this
dynamic, hardware-supported scheduling that contributes to
the efficiency of the reactive processing approach.
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It has also been proposed to run Esterel programs
on a virtual machine (BAL [18]), which allows a very
compact byte code representation. In a way, this execution
platform can be considered as an intermediate form between
traditional software synthesis and reactive processing; it is a
software running on traditional processors, but uses a more
abstract instruction set. The proposal by Plummer et al. also
uses a multithreaded concurrency model, as in the KEP
platform considered here. However, they do not assume
the existence of a run-time scheduler, but instead hand
control explicitly over between threads. Thus their schedul-
ing problem is related to ours, but does not involve the
need to compute priorities as we have to do here. Instead,
they have to insert explicit points for context switches.
The main difference in both approaches is that the KEP
only switches to active threads, while the BAL switches
to statically defined control points. One could, however,
envision a virtual machine that has an ISA that adopts our
multithreading model (a straightforward, albeit inefficient
VM would be a KEP simulator), and for which the approach
presented here could be applied.

One of the byproducts of our compilation approach
is dead code elimination (DCE), see also Section 4.3. Our
approach here is rather conservative, considering only static
reachability. A more aggressive approach to DCE based on
Esterel∗ (an extension of Esterel with a noninstantaneous
jump instruction) has been presented by Tardieu and
Edwards [19]. Their approach, as well as other work that
performs reachability analysis as part of constructiveness
analysis [20], is more involved than our approach in that
they perform an (more or less conservative) analysis of the
reachable state space.

Regarding timing analysis, there exist numerous
approaches to classical worst-case execution time (WCET)
analysis. For surveys see, for example, Puschner and Burns
[21] or Wilhelm et al. [22]. These approaches usually
consider (subsets) of general purpose languages, such as C,
and take information on the processor designs and caches
into account. It has long been established that to perform
an exact WCET analysis with traditional programming
languages on traditional processors is difficult, and in
general not possible for Turing-complete languages.
Therefore WCET analysis typically impose fairly strong
restrictions on the analyzed code, such as a-priori known
upper bounds on loop iteration counts, and even then
control flow analysis is often overly conservative [23, 24].
Furthermore, even for a linear sequence of instructions,
typical modern architectures make it difficult to predict
how much time exactly the execution of these instructions
consumes, due to pipelining, out-of-order execution,
argument-dependent execution times (e.g., particularly
fast multiply-by-zero), and caching of instructions and/or
data [25]. Finally, if external interrupts are possible or if
an operating system is used, it becomes even more difficult
to predict how long it really takes for an embedded system
to react to its environment. Despite the advances already
made in the field of WCET analysis, it appears that most
practitioners today still resort to extensive testing plus
adding a safety margin to validate timing characteristics.

To summarize, performing conservative yet tight WCET
analysis appears by no means trivial and is still an active
research area.

Whether WCRT can be formulated as a classical WCET
problem or not depends on the implementation approach. If
the implementation is based on sequentialization such that
there exist two dedicated points of control at the beginning
and the end of each reaction, respectively, then WCRT can be
formulated as WCET problem; this is the case, for example,
if one “automaton function” is synthesized, which is called
during each reaction. If, however, the implementation builds
on a concurrent model of execution, where each thread
maintains its own state-of-control across reactions, then
WCRT requires not only determining the maximal length
of predefined instruction sequences, as in WCET, but one
also has to analyze the possible control point pairs that
delimit these sequences. Thus, WCRT is more elementary
than WCET in the sense that it considers single reactions,
instead of whole programs, and at the same time WCRT
is more general than WCET in that it is not limited to
predefined control boundaries.

One step to make the timing analysis of reactive appli-
cations more feasible is to choose a programming language
that provides direct, predictable support for reactive control
flow patterns. We argue that synchronous languages, such
as Esterel, are generally very suitable candidates for this,
even though there has been little systematic treatment of
this aspect of synchronous languages so far. One argument
is that synchronous languages naturally provide a timing
granularity at the application level, the logical ticks that
correspond to system reactions, and impose clear restriction
onto what programs may do within these ticks. For example,
Esterel has the rule that there cannot be instantaneous
loops: within a loop body, each statically feasible path must
contain at least one tick-delimiting instruction, and the
compiler must be able to verify this. Another argument is
that synchronous languages directly express reactive control
flow, including concurrency, thus lowering the need for an
operating system with unpredictable timing.

Logothetis et al. [26, 27] have employed model checking
to perform a precise WCET analysis for the synchronous
language Quartz, which is closely related to Esterel. However,
their problem formulation was different from the WCRT
analysis problem we are addressing. They were interested in
computing the number of ticks required to perform a certain
computation, such as a primality test, which we would
actually consider to be a transformational system rather than
a reactive system [28]. We here instead are interested in how
long it may take to compute a single tick, which can be
considered an orthogonal issue.

Ringler [29] considers the WCET analysis of C code
generated from Esterel. However, his approach is only
feasible for the generation of circuit code [13], which scales
well for large applications, but tends to be slower than the
simulation-based approach.

Li et al. [15] compute a of sequential Esterel programs
directly on the source code. However, they did not address
concurrency, and their source-level approach could not
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consider compiler optimizations. We perform the analysis
on an intermediate level after the compilation, as a last step
before the generation of assembler code. This also allows a
finer analysis and decreases the time needed for the analysis.

One important problem that must be solved when
performing WCRT analysis for Esterel is to determine
whether a code segment is reachable instantaneously, or
delayed, or both. This is related to the well-studied property
of surface and depth of an Esterel program, that is, to
determine whether a statement is instantaneously reachable
or not, which is also important for schizophrenic Esterel
programs [13]. This was addressed in detail by Tardieu and
de Simone [30]. They also point out that an exact analysis of
instantaneous reachability has NP complexity. We, however,
are not only interested whether a statement can be instanta-
neous, but also whether it can be noninstantaneous.

3. ESTEREL, THE KIEL ESTEREL PROCESSOR AND
THE CONCURRENT KEP ASSEMBLER GRAPH

Next we give a short overview of Esterel and the KEP. We
also introduce the CKAG, a graph-representation of Esterel,
which is used both for the compilation and the WCRT
analysis.

3.1. Esterel

The execution of an Esterel program is divided into logical
instants, or ticks, and communication within or across
threads occurs via signals. At each tick, a signal is either
present (emitted) or absent (not emitted). Esterel statements
are either transient, in which case they do not consume
logical time, or delayed, in which case execution is finished
for the current tick. Per default statements are transient,
and these include for example emit, loop, present, or the
preemption operators. Delayed statements include pause,
(nonimmediate) await, and every. Esterel’s parallel operator,
‖, groups statements in concurrently executed threads. The
parallel terminates when all its branches have terminated.

Esterel offers two types of preemption constructs. An
abortion kills its body when an abortion trigger occurs. We
distinguish strong abortion, which kills its body immediately
(at the beginning of a tick), and weak abortion, which lets
its body receive control for a last time (abortion at the end
of the tick). A suspension freezes the state of a body in the
instant when the trigger event occurs.

Esterel also offers an exception handling mechanism via
the trap/exit statements. An exception is declared with a
trap scope, and is thrown (raised) with an exit statement.
An exit T statement causes control flow to move to the end
of the scope of the corresponding trap T declaration. This
is similar to a goto statement, however, there are further
rules when traps are nested or when the trap scope includes
concurrent threads. If one thread raises an exception and
the corresponding trap scope includes concurrent threads,
then the concurrent threads are weakly aborted; if concurrent
threads execute multiple exit instructions in the same tick,
the outermost trap takes priority.

3.1.1. Examples

As an example of a simple, nonconcurrent program consider
the module ExSeq shown in Figure 1(a). As the sample
execution trace illustrates, the module emits signal R in every
instant, until it is aborted by the presence of the input signal
I. As this is a weak abortion, the abortion body gets to execute
(emit R) one last time when it is aborted, followed by an
emission of S.

The program ExPar shown in Figure 2(a) introduces
concurrency: a thread that emits R and then terminates,
and a concurrent thread that emits S, pauses for an instant,
emits T, and then terminates are executed in an infinite loop.
During each loop iteration, the parallel terminates when
both threads have terminated, after which the subsequent
loop iteration is started instantaneously, that is, within the
same tick.

A slightly more involved example is the program
Edwards02 [9, 10], shown in Figure 3(a). This program
implements the following behavior: whenever the signal S is
present, (re-)start two concurrent threads. The first thread
first awaits a signal I; it then continuously emits R until A is
present, in which case it emits R one last time (weak abortion
of the sustain), emits O, and terminates. The second thread
tests every other tick for the presence of R, in which case it
emits A.

3.1.2. Statement dismantling

At the Esterel level, one distinguishes kernel statements
and derived statements. The derived statements are basically
syntactic sugar, built up from the kernel statements. In
principle, any set of Esterel statements from which the
remaining statements can be constructed can be considered a
valid set of kernel statements, and the accepted set of Esterel
kernel statements has evolved over time. For example, the
halt statement used to be considered a kernel statement,
but is now considered to be derived from loop and pause.
We here adopt the definition of which statements are
kernel statements from the v5 standard [31]. The process
of expanding derived statements into equivalent, more
primitive statements—which may or may not be kernel
statements—is also called dismantling. The Esterel program
Edwards02-dism (Figure 3(b)) is a dismantled version of
Edwards02. It is instructive to compare this program to the
original, undismantled version.

3.2. The Kiel Esterel processor

The instruction set architecture (ISA) of the KEP is very
similar to the Esterel language. Part of the KEP instruction
set is shown in Table 1; a complete description can be
found elsewhere [32]. The KEP instruction set includes
all kernel statements (see Section 3.1.2), and in addition
some frequently used derived statements. The KEP ISA also
includes valued signals, which cannot be reduced to kernel
statements. The only parts of Esterel v5 that are not part
of the KEP ISA are combined-signal handling and external-
task handling, as they both seem to be used only rarely in



Marian Boldt et al. 5

module ExSeq:

input

output

weak abort

loop

pause

emit R

end loop

when I;

emit S

end module

tick

In:

Out:

;

R R R

I

S

R, S;

I;

(a) Esterel code and
sample trace

[L3, W5] EMIT R

module: ExSep
EMIT_TICKLEN, #6

[L2, W3] A1

[L2, W3/6] PAUSE

I

[L5, W2] A0

[L5, W2] EMIT S

[L6, W1/1] HALT

[L4, W4] GOTO A1

w

[L1, W5] WABORT I, A0

(b) CKAG

% module: ExSeq

INPUT I

OUTPUT R,S

EMIT TICKLEN,#6

[L1,W5] WABORT I,A0

[L2,W3/6] A1: PAUSE

[L3,W5] EMIT R

[L4,W4] GOTO A1

[L5,W2] A0: EMIT S

[L6,W1/1] HALT

(c) KEP assembler

– Tick 1 –

! reset ;

% In:

% Out: R

% RT= 3

WABORTL1

PAUSEL2

– Tick 2 –

% In:

% Out: R

% RT= 4

PAUSEL2 EMITL3

GOTOL4 PAUSEL2

– Tick 3 –

% In: I

% Out: R S

% RT= 6

PAUSEL2 EMITL3

GOTOL4 PAUSEL2

EMITL5 HALTL6

– Tick 4 –

% In:

% Out:

% RT= 1

HALTL6

(d) Execution trace

Figure 1: A sequential Esterel example. The body of the KEP assembler program (without interface declaration and initialization of the
TickManager) is annotated with line numbers L1–L6, which are also used in the CKAG and in the trace to identify instructions. The trace
shows for each tick the input and output signals that are present and the reaction time (RT), in instruction cycles.

module ExPar:

output

loop
[

emit R;
||

emit S;
pause;
emit T;

]

tick

In:

Out:
S S

T

S

T

R R R

end module

end loop

R, S, T;

(a) Esterel code
and sample trace

[L1, W7] A0

[L3, W7]

1 1

[L4, W1] A1 [L5, W2] A2

[L6, W1/2] PAUSE

[L8, W9/11] JOIN 0

[L9, W8] GOTO A0

[L7, W1] EMIT T

[L5, W2] EMIT S

[L4, W1] EMIT R

module: ExPar
EMIT_TICKLEN, #11

PAR∗

(b) CKAG

% module: ExPar

OUTPUT R,S,T

EMIT TICKLEN,#11

[L1,W7] A0: PAR 1,A1,1

[L2] PAR 1,A2,2

[L3,W7] PARE A3,1

[L4,W1] A1: EMIT R

[L5,W2] A2: EMIT S

[L6,W1/2] PAUSE

[L7,W1] EMIT T

[L8,W9/11] A3: JOIN 0

[L9,W8] GOTO A0

(c) KEP assembler

– Tick 1 –

! reset ;

% In:

% Out: R S

% RT= 7

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

– Tick 2 –

% In:

% Out: R S T

PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

– Tick 3 –

% In:

% Out: R S T

PAUSEL6 EMITL7

JOINL8 GOTOL9

PARL1 PARL2

PAREL3 EMITL4

EMITL5 PAUSEL6

JOINL8

(d) Execution
trace

Figure 2: A concurrent example program.
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(1) module Edwards02:
(2) input S, I;
(3) output O;
(4)
(5) signal A,R in
(6) every S do
(7) await I;
(8) weak abort
(9) sustain R;
(10) when immediate A;
(11) emit O;
(12) ‖
(13) loop
(14) pause;
(15) pause;
(16) present R then
(17) emit A;
(18) end present
(19) end loop
(20) end every
(21) end signal
(22)
(23) endmodule

(a) Esterel

(1) module Edwards02-dism:
(2) input S
(3) input I
(4) output O;
(5)
(6) signal A, R in
(7) abort
(8) loop pause end loop
(9) when S;
(10) loop
(11) abort
(12) [
(13) abort
(14) loop pause end loop
(15) when I;
(16) weak abort
(17) loop
(18) emit R;
(19) pause
(20) end loop
(21) when immediate A;
(22) emit O
(23) ‖
(24) loop
(25) pause;
(26) pause;
(27) present R then
(28) emit A
(29) end present
(30) end loop
(31) ];
(32) loop pause end loop
(33) when S
(34) end loop
(35) end signal
(36) endmodule

(b) Esterel after dismantling

% Module Edwards02
INPUT S,I
OUTPUT O

[L00,T0] EMIT TICKLEN,#13
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10: EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11:PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12: PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0]A3: GOTO A2

(c) KEP assembler

Figure 3: The Edwards02 example [9].

practice. However, adding these capabilities to the KEP ISA
seems relatively straightforward.

Due to this direct mapping from Esterel to the KEP
ISA, most Esterel statements can be executed in just one
instruction cycle. For more complicated statements, well-
known translations into kernel statements exist, allowing
the KEP to execute arbitrary Esterel programs. The KEP
assembler programs corresponding to ExSeq and ExPar and
sample traces are shown in Figures 1(c)-1(d) and 2(c)-2(d),
respectively, and the KEP assembler program for Edwards02
is shown in Figure 3(c), respectively. Note that PAUSE is
executed for at least two consecutive ticks, and consumes an
instruction cycle at each tick.

The KEP provides a configurable number of Watcher
units, which detect whether a signal triggering a preemption
is present and whether the program counter (PC) is in
the corresponding preemption body [33]. Therefore, no
additional instruction cycles are needed to test for preemp-
tion during each tick. Only upon entering a preemption
scope two cycles are needed to initialize the Watcher, as for
example the WABORTL1 instruction in ExSeq (Figure 1(c))
To aid readability, we here use the convention of subscripting
KEP instructions with the line number where they occur.

To implement concurrency, the KEP employs a multi-
threaded architecture, where each thread has an independent
program counter (PC) and threads are scheduled according
to their statuses, thread id and dynamically changing prior-
ities: between all active threads, the thread with the highest
priority is scheduled. If there is more than one thread with
this priority, the highest thread id wins. The scheduler is very
light-weight. In the KEP, scheduling and context switching
do not cost extra instruction cycles, only changing a thread’s
priority costs an instruction. The priority-based execution
scheme allows on the one hand to enforce an ordering
among threads that obeys the constraints given by Esterel’s
semantics, but on the other hand avoids unnecessary context
switches. If a thread lowers its priority during execution but
still has the highest priority, it simply keeps executing.

A concurrent Esterel statement with n concurrent threads
joined by the ‖-operator is translated into KEP assembler as
follows. First, threads are forked by a series of instructions
that consist of n PAR instructions and one PARE instruction.
Each PAR instruction creates one thread, by assigning a
nonnegative priority, a start address, and the thread id. The
end address of the thread is either given implicitly by the
start address specified in a subsequent PAR instruction, or, if
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Table 1: Overview of the KEP instruction set architecture, and their relation to Esterel and the number of processor cycles for the execution
of each instruction.

Mnemonic, operands Esterel syntax Cycles Notes

PAR prio1, startAddr1, id1

[p1 ‖ · · · ‖pn]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

n + 1 For each thread, one PAR is needed to define the
start address, thread id, and initial priority. The
end of a thread is defined by the start address of
the next thread, except for the last thread, whose
end is dened via PARE.

. . .

PAR prion, startAddrn, idn

PARE endAddr

startAddr1:

. . .

startAddr2:

. . .

startAddrn: The cycle count of a fork node depends on the
count of threads.. . .

endAddr:
1

JOIN

PRIO prio 1 Set current thread priority to prio.

[W]ABORT[I, n] S, endAddr [weak] abort 2

. . . . . .

endAddr: when [immediate, n] S

SUSPEND[I, n] S, endAddr suspend 2

. . . . . .

endAddr: when [immediate, n] S

startAddr: trap T in

1
Exit from a trap, startAddr/exitAddr species trap
scope. Unlike GOTO, check for concurrent EXITs
and terminate enclosing ‖.

. . . . . .

EXIT exitAddr startAddr exit T

. . . . . .

exitAddr: end trap

PAUSE pause 1 Wait for a signal. AWAIT TICK is equivalent to
PAUSE.AWAIT [I, n] S await [immediate, n] S 1

SIGNAL S signal S in . . . end 1 Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] 1 Emit (valued) signal S.

SUSTAIN S [, {#data|reg}] sustain S [(val)] 1 Sustain (valued) signal S.

PRESENT S, elseAddr present S then . . . end 1 Jump to elseAddr if S is absent.

HALT halt 1 Halt the program.

addr: . . .GOTO addr loop . . . end loop 1 Jump to addr.

there is no more thread to be created, it is specified in a PARE
instruction. The code block for the last thread is followed
by a JOIN instruction, which waits for the termination of
all forked threads and concludes the concurrent statement.
The example in Figure 2(c) illustrates this: instruction L4
constitutes thread 1, thread 2 spans L5–L8, and the remaining
instructions belong to the main thread, which implicitly has
id 0.

The priority of a thread is assigned when the thread
is created (with the aforementioned PAR instruction), and
can be changed subsequently by executing a priority setting
instruction (PRIO). A thread keeps its priority across delay
instructions; that is, at the start of a tick it resumes execution
with the priority it had at the end of the previous tick.
This mechanism allows an arbitrary interleaving of thread
execution for communicating among threads within the
same logical tick. Therefore, a thread may be executed

partially, then control may jump to another thread, and later
return to the first thread, all within the same tick.

When a concurrent statement terminates, through reg-
ular termination of all concurrent threads or via an excep-
tion/abort, the priorities associated with the terminated
threads also disappear, and the priority of the main thread
is restored to the priority upon entering the concurrent
statement.

The KEP contains a TickManager, which monitors how
many instructions are executed in the current logical tick.
To minimize jitter, a maximum number of instructions for
each logical tick can be specified, via the “special” valued
signal TICKLEN. If the current tick needs less instructions,
the start of the next tick is delayed, making the maximum
number of instructions the exact number of instructions.
If the tick needs more instructions, an error-output is set.
Hence a tight, but conservative upper bound of the maximal
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EMIT S

suc c

(a) transient

A0

suc c

(b) label

PAUSE
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(c) delay
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(d) fork

JOIN

suc c suc e

(e) join

Figure 4: Nodes and edges of a concurrent KEP assembler graph.

instructions for one tick, as computed by the WCRT analysis
presented in Section 5, is of direct value for the KEP. See
Li et al. [15] for details on the TickManager and the relation
between the maximum number of instruction per logical tick
and the physical timing constraints from the environment
perspective.

Note that the KEP compiler per default computes a
value for the WCRT and adds a corresponding assembler
instruction that specifies a value for TICKLEN. However,
the KEP does not require such a specification of TICKLEN.
If TICKLEN is left unspecified, the processor “runs freely”
and starts the next logical tick as soon as the current tick is
finished. This lowers, on average, the reaction time, at the
price of a possible jitter.

3.3. The concurrent KEP assembler graph

The CKAG is a directed graph composed of various types
of nodes and edges to match KEP program behavior. It is
used during compilation from Esterel to KEP assembler,
for, for example, priority assigning, dead code elimination,
further optimizations, and the WCRT analysis. The CKAG is
generated from the Esterel program via a simple structural
translation. The only nontrivial aspect is the determination
of noninstantaneous paths, which is needed for certain
edge types. For convenience, we label nodes with KEP
instructions; however, we could alternatively have used
Esterel instructions as well.

The CKAG distinguishes the following sets of nodes, see
also Figure 4:

L: label nodes (ellipses);

T: transient nodes (rectangles), which include EMIT,
PRESENT, and so forth;

D: delay nodes (octagons), which correspond to delayed
KEP instructions (PAUSE, AWAIT, HALT, SUSTAIN);

F: fork nodes (triangles), corresponding to PAR/PARE;

J: join nodes (inverted triangles), corresponding to
JOIN;

N: set of all nodes, with N = T ∪ L∪D ∪ F ∪ J .

We also define

A: the abort nodes, which denote abortion scopes and
correspond to [W]ABORT and SUSPEND; note that
A ⊆ T .

For each fork node n (n ∈ F), we define

n.join: the JOIN statement corresponding to n (n. join ∈ J),
and

n.sub: the transitive closure of nodes in threads spawned
by n.

For abort nodes n (n ∈ A), we define

n.end: the end of the abort scope opened by n, and

n.scope: the nodes within n’s abort scope.

A nontrivial task when defining the CKAG structure is
to properly distinguish the different types of possible control
flow, in particular with respect to their timing properties
(instantaneous or delayed). We define the following types of
successors for each n:

n.succ: the control successors. These are the nodes that
follow sequentially after n, considering normal control flow
without any abortions. For n ∈ F, n.succ includes the nodes
corresponding to the beginnings of the forked threads.

The successors are statically inserted, based on the syntax
of the Esterel program, based on the actual behavior, some of
these can be removed. If n is the last node of a concurrent
thread, n.succ includes the node for the corresponding
JOIN—unless n’s thread is instantaneous and has a (prov-
ably) noninstantaneous sibling thread. Furthermore, the
control successors exclude those reached via a preemption
(n.sucw, n.sucs)—unless n is an immediate strong abortion
node, in which case n.end ∈ n.succ.

n.sucw: the weak abort successors. If n ∈ D, this is the set of
nodes to which control can be transferred immediately, that
is when entering n at the end of a tick, via a weak abort; if n
exits a trap, then n.sucw contains the end of the trap scope;
otherwise it is ∅.

If n ∈ D and n ∈ m.scope for some abort node m, it
is m.end ∈ n.sucw in case of a weak immediate abort, or
in case of a weak abort if there can (possibly) be a delay
between m and n.

n.sucs: the strong abort successors. If n ∈ D, these are the
nodes to which control can be transferred after a delay, that
is when restarting n at the beginning of a tick, via a strong
abort; otherwise it is ∅.

If n ∈ D and n ∈ m.scope for some strong abort node m,
it is m.end ∈ n.sucs.

Note that this is not a delayed abort in the sense that an
abort signal in one tick triggers the preemption in the next
tick. Instead, this means that first a delay has to elapse, and
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the abort signal must be present at the next tick (relative to
the tick when n is entered) for the preemption to take place.

n.suce: the exit successors. These are the nodes that can be
reached by raising an exception.

n.suc f : the flow successors. This is the set n.succ∪n.sucw∪
n.sucs.

For n ∈ F, we also define two kinds of fork abort
successors. These serve to ensure a correct priority assignment
to parent threads in case there is an abort out of a concurrent
statement.

n.sucw f : the weak fork abort successors. This is the
union of m.sucw \n.sub for all m ∈ n.sub where there
exists an instantaneous path from n to m.

n.sucs f : the strong fork abort successors. This is the set
∪{(m.sucw ∪m.sucs) \ n.sub | m ∈ n.sub} \ n.sucw f .

In the graphical representation, control successors are
shown by solid lines, all other successors by dashed lines,
annotated with the kind of successor.

The CKAG is built from Esterel source by traversing
recursively over its absract syntax tree (AST) generated
by the Colombia Esterel compiler (CEC) [34]. Visiting an
Esterel statement results in creating the according CKAG
node. A node typically contains exactly one statement,
except label nodes containing just address labels and fork
nodes containing one PAR statement for each child thread
initialization and a PARE statement. When a delay node is
created, additional preemption edges are added according to
the abortion/exception context.

Note that some of the successor sets defined above
cannot be determined precisely by the compiler, but have
to be (conservatively) approximated instead. This applies
in particular to those successor types that depend on the
existence of an instantaneous path. Here it may be the case
that for some pair of nodes there does not exist such an
instantaneous path, but that the compiler is not able to
determine that. In such cases, the compiler conservatively
assumes that there may be such an instantaneous path. This
is a common limitation of Esterel compilers, and compilers
differ in their analysis capabilities here—see also Section 4.1.

4. THE KEP COMPILER

A central problem for compiling Esterel onto the KEP is
the need to manage thread priorities during their creation
and their further execution. In the KEP setting, this is not
merely a question of efficiency or of meeting given deadlines,
but a question of correct execution. Specifically, we have to
schedule threads in such a fashion that all signal dependencies
are obeyed. Such dependencies arise whenever a signal is
possible emitted and tested in the same tick; we must ensure
that all potential emitters for a signal have executed before
that signal is tested.

A consequence of Esterel’s synchronous model of execu-
tion is that there may be dependency cycles, which involve
concurrent threads communicating back and forth within
one tick. Such dependency cycles must be broken, for
example, by a delay node, because otherwise it would not

be possible for the compiler to devise a valid execution
schedule that obeys all ordering (causality) constraints. In
the Edwards02 example (Figure 3(a)), there is one depen-
dency cycle, from the sustain R9 instruction in the first
parallel thread to the present R16 in the second parallel
to the emit A17 back to the sustain R9, which is weakly
aborted whenever A is present. The dependency cycle is
broken in the dismantled version, as there the sustain R
has been separated into signal emission (emit R18) and a
delay (pause19), enclosed in a loop. The broken dependency
cycle can also be observed in the CKAG, shown in Figure 5.
Referring to nodes by the corresponding line numbers (the
“Lxx” part of the node labels) in the KEP assembler code
(Figure 3(c)), the cycle is L14 → L23 → L24 → L17 → L18
→ L14; it is broken by the delay in L17.

The priority assigned during the creation of a thread and
by a particular PRIO instruction is fixed. Due to the nonlinear
control flow, it is still possible that a given statement may
be executed with varying priorities. In principle, the archi-
tecture would therefore allow a fully dynamic scheduling.
However, we here assume that the given Esterel program
can be executed with a statically determined schedule, which
requires the existence of no cyclic signal dependencies.
This is a common restriction, imposed for example by the
Esterel v7 [35] and the CEC compilers; see also Section 3.3.
Note that there are also Esterel programs that are causally
correct (constructive [1]), yet cannot be executed with a
static schedule and hence cannot be directly translated into
KEP assembler using the approach presented here. However,
these programs can be transformed into equivalent, acyclic
Esterel programs [36], which can then be translated into
KEP assembler. Hence, the actual run-time schedule of a
concurrent program running on KEP is static in the sense
that if two statements that depend on each other, such as
the emission of a certain signal and a test for the presence
of that signal, are executed in the same logical tick, they
are always executed in the same order relative to each other,
and the priority of each statement is known in advance.
However, the run-time schedule is dynamic in the sense
that due to the nonlinear control flow and the independent
advancement of each program counter, it in general cannot
be determined in advance which code fragments are executed
at each tick. This means that the thread interleaving cannot
be implemented with simple jump instructions. Instead, a
run-time scheduling mechanism is needed that manages the
interleaving according to the priority and actual program
counter of each active thread.

To obtain a more general understanding of how the
priority mechanism influences the order of execution, recall
that at the start of each tick, all enabled threads are activated,
and are subsequently scheduled according to their priorities.
Furthermore, each thread is assigned a priority upon its cre-
ation. Once a thread is created, its priority remains the same,
unless it changes its own priority with a PRIO instruction,
in which case it keeps that new priority until it executes yet
another PRIO instruction, and so on. Neither the scheduler
nor other threads can change a thread’s priority. Note also
that a PRIO instruction is considered instantaneous. The only
noninstantaneous instructions, which delimit the logical
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[L8, T1-1] A4: TABORT I, A7

module: Edwards02

I

A

1

[L9, T1] A8: PRIO 3

[L10, T1-1/3] PAUSE

[L11, T1] PRIO 1

[L14, T1-3] A10: EMIT R [L12, T1-1] GOTO A8

[L23, T2-2] PRESENT R, A12 [L15, T1] PRIO 1

[L24, T2-2] EMIT A

[L25, T2] A12: PRIO 1

[L26, T2-1] GOTO A11 [L18, T1-3] GOTO A10 [L19, T1-1] A9: EMIT O

[L27, T0-1] JOIN

[L21, T2] PRIO 2

S

[L22, T2-1/2] PAUSE

S

[L28, T0-1] A3: GOTO A2

S

[L16, T1] PRIO 3

[L4, T0-1] A2: LABORT S, A3

[L3, T0-1/1] AWAIT S

[L2, T0-1] SIGNAL R

[L1, T0-1] SIGNAL A

[L0, T0-1] EMIT_TICKLEN, #10

[L17, T1-1/3] PAUSES

[L13, T1-3] A7: TWABORTI A, A9

[L20, T2-1/1] A5: A11: PAUSE

[L7,T0-1] PAR∗

s f

1

s s

f

t

i

i

w s

s

s

Figure 5: The CKAG for the Edwards02 example from Figure 3(a). Dotted lines indicate dependencies (L14→ L23 and L24→ L17), the tail
label “i” indicates that these are immediate dependencies (see Section 4.1). For the sake of compactness, label nodes have been incorporated
into their (unique) successor nodes.

ticks and are also referred to delayed instructions, are the
PAUSE instruction and derived instructions, such as AWAIT
and SUSTAIN. This mechanism has a couple of implications.

(i) At the start of a tick, a thread is resumed with
the priority corresponding to the last PRIO instruction it

executed during the preceding ticks, or with the priority
it has been created with if it has not executed any PRIO
instructions. In particular, if we must set the priority of a
thread to ensure that at the beginning of a tick the thread is
resumed with a certain priority, it is not sufficient to execute
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a PRIO instruction at the beginning of that tick; instead,
we must already have executed that PRIO instruction in the
preceding tick.

(ii) A thread is executed only if no other active thread
has a higher priority. Once a thread is executing, it continues
until a delayed statement is reached, or until its priority is
lower than that of another active thread or equal to that of
another thread with higher id. While a thread is executing,
it is not possible for other inactive threads to become active;
furthermore, while a thread is executing, it is not possible
for other threads to change their priority. Hence, the only
way for a thread’s priority to become lower than that of other
active threads is to execute a PRIO instruction that lowers its
priority below that of other active threads.

4.1. Annotating the CKAGwith dependencies

In order to compute the thread priorities, we annotate the
with additional information about already known priorities
and dependencies. For all nodes n, we define

n.prio: the priority that the thread executing n should
be running with.

For n ∈ D ∪ F, we also define

n.prionext: the priority that the thread executing n
should be resumed with in the subsequent tick.

We annotate each node n with the set of nodes that read
a signal which is emitted by n. It turns out that analogously
to the distinction between prio and prionext, we must
distinguish between dependencies that affect the current tick
and the next tick:

n.depi: the dependency sinks with respect to n at the
current tick (the immediate dependencies),

n.depd: the dependency sinks with respect to n at the
next tick (the delayed dependencies).

We here assume that the Esterel program given to
our compiler has already been established to be causal
(constructive), using one of the established constructiveness
analysis procedures [20], as for example implemented in the
Esterel v5 compiler. We therefore consider only dependencies
that cross thread boundaries, as dependencies within a
thread do not affect the scheduling. In other words, we
assume that intrathread dependencies are already covered
by control dependencies; would that not be the case, the
program would not be causal, and should be rejected. Should
we not want to rely on a separate constructiveness analysis,
we would have to consider intrathread dependencies as well.

In general, dependencies are immediate, meaning that
they involve statements that are entered at the same tick. An
exception are dependencies between emissions of a strong
abort trigger signal and corresponding delay nodes within
the abort scope, as strong aborts affect control flow at the
beginning of a tick and not at the end of a tick. In this case,
the trigger signal (say, S) is not tested when the delay node
(N) is entered as the entering of N marks the end of a tick,
and hence control would not even reach N if S was present.

However, S is tested when N is restarted at beginning of the
next tick.

As already mentioned, we assume that the given program
does not have cycles. However, what exactly constitutes a
cycle in an Esterel program is not obvious, and to our
knowledge there is no commonly accepted definition of
cyclicity at the language level. The Esterel compilers that
require acyclic programs differ in the programs they accept
as “acyclic.” For example, the CEC accepts some programs
that the v5 compiler rejects and vice versa [36], and a
full discussion of this issue goes beyond the scope of this
paper. Effectively, a program is considered cyclic if it is
not (statically) schedulable—and compilers differ in their
scheduling abilities. We here consider a program cyclic if the
priority assignment algorithm presented in the next section
fails. This results in the following definition, based on the
CKAG.

Definition 1 (Program cycle). An Esterel program is cyclic if
the corresponding CKAG contains a path from a node to
itself, where for each node n and its successors along that
path, n′ and n′′, the following holds:

n ∈ D ∧ n′ ∈ n.sucw

∨ n ∈ F ∧ n′ ∈ n.succ ∪ n.sucw f

∨ n ∈ T ∧ n′ ∈ n.succ ∪ n.depi

∨ n∈T ∧ n′ ∈ n.depd ∧ n′′ ∈n′.succ∪n′.sucs∪n′.sucs f .
(1)

Note that some of the sets that this definition uses
are conservatively approximated by the compiler, as already
mentioned in Section 3.3. In other words, our compiler may
detect spurious cycles and therefore reject a program even if
it is causal. As we consider dependencies only if they cross
thread boundaries, it appears that we can schedule more
programs than other compilers typically can, and we did
not encounter a scheduling problem with any of the tested
programs. However, a systematic investigation of this issue is
still open.

4.2. Computing thread priorities

The task of the priority algorithm is to compute a priority
assignment that respects the Esterel semantics as well as the
execution model of the KEP. The algorithm computes for
each reachable node n in the CKAG the priority n.prio and,
for nodes in D ∪ F, n.prionext. According to the Esterel
semantics and the observations made in Section 3.3, a correct
priority assignment must fulfill the following constraints,
where m,n are arbitrary nodes in the CKAG.

Constraint 1 (Dependencies). A thread executing a depen-
dency source node must have a higher priority than the
corresponding sink. Hence, for m ∈ n.depi, it must be
n.prio > m.prio, and for m ∈ n.depd, it must be n.prio >
m.prionext.

Constraint 2 (Intratick priority). Within a logical tick, a
thread’s priority cannot increase. Hence, for n ∈ D and
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(1) procedure main()
(2) forall n ∈ N do
(3) n.prio := −1
(4) Vprio :=∅

(5) Vprionext :=∅

(6) NToDo := nroot
(7) while ∃n ∈ NToDo \Vprio do
(8) getPrio(n)
(9) forall n ∈ ((D ∪ F)∩Vprio) \Vprionext do
(10) getPrioNext(n)
(11) end

(1) function getPrioNext(n)
(2) if n.prionext = −1 then
(3) if (n ∈ Vprionext) then
(4) error (“Cycle detected!”)
(5) Vprionext ∪= n
(6) if n ∈ D then
(7) n.prionext := prioMax(n.succ ∪ n.sucs)
(8) elif n ∈ F then
(9) n.prionext :=
(10) max(n. join.prio, prioMax(n.sucs f ))
(11) end
(12) end
(13) return n.prionext
(14) end

(1) function prio [Next]Max(M)
(2) p := 0
(3) forall n ∈M do
(4) p := max(p, getPrio[Next](n))
(5) return p
(6) end

(1) function getPrio(n)
(2) if n.prio = −1 then
(3) if (n ∈ Vprio) then
(4) error (“Cycle detected!”)
(5) Vprio ∪= n
(6) if n ∈ D then
(7) n.prio := prioMax(n.sucw),
(8) NToDo = n.succ ∪ n.sucs
(9) elif n ∈ F then
(10) n.prio := prioMax(n.succ ∪ n.sucw f ),
(11) NToDo ∪= n.sucs f ∪ n. join.prio
(12) elif n ∈ T then
(13) n.prio := max(prioMax(n.succ),
(14) prioMax(n.depi) + 1
(15) prioNextMax(n.depd) + 1)
(16) end
(17) end
(18) return n.prio
(19) end

Figure 6: Algorithm to compute priorities.

m ∈ n.sucw, or n ∈ F and m ∈ n.succ ∪ n.sucw f , or n ∈ T
and m ∈ n.succ, it must be n.prio ≥ m.prio.

Constraint 3 (Intertick priority for delay nodes). To ensure
that a thread resumes computation from some delay node n
with the correct priority, n.prionext ≥ m.prio must hold for
all m ∈ n.succ ∪ n.sucs.

Constraint 4 (Intertick priority for fork nodes). To ensure
that a main thread that has executed a fork node n resumes
computation—after termination of the forked threads—with
the correct priority, n.prionext ≥ n. join.prio must hold.
Furthermore, n.prionext ≥ m.prio must hold for all m ∈
n.sucs f .

One could imagine an iterative approach for priority
assignment, where all nodes are initially assigned a low prior-
ity and priorities are iteratively increased until all constraints
are met. However, this would probably be not very efficient,
and it would be difficult to validate its correctness and its
termination. As it turns out, there is a better alternative.
We can order the computations of all priorities such that
when a specific priority value is computed, all the priorities
that this value may depend on have already been computed.
The algorithm shown in Figure 6 achieves this by performing
recursive calls that traverse the CKAG in a specific manner.

The algorithm starts in main(), which, after some
initializations, in line 8 calls getPrio() for all nodes that must
yet be processed. This set of nodes, given by NToDo \ Vprio

(for “Visited”), initially just contains the root of the CKAG.
After prio has been computed for all reachable nodes in

the CKAG, a forall loop computes prionext for reachable
delay/fork nodes that have not been computed yet.

getPrio() first checks whether it has already computed
n.prio. If not, it then checks for a recursive call to itself (lines
3/4, see also Lemma 1). The remainder of getPrio() computes
n.prio and, in case of delay and fork nodes, adds nodes to the
NToDo list. Similarly getPrioNext() computes n.prionext.

Lemma 1 (Termination). For a valid, acyclic Esterel program,
getPrio() and getPrioNext() terminate. Furthermore, they do
not generate a “Cycle detected!” error message.

Proof (Sketch). getPrio() produces an error (line 4) if it has
not computed n.prio yet (checked in line 2) but has already
been called (line 3) earlier in the call chain. This means
that it has called itself via one of the calls to prioMax()
or prioNextMax() (via getPrioNext()). An inspection of the
calling pattern yields that an acyclic program in the sense
of Definition 1 cannot yield a cycle in the recursive call
chain. Since the number of nodes is finite, both algorithms
terminate.

Lemma 2 (Fulfillment of constraints). For a valid, acyclic
Esterel program, the priority assignment algorithm computes
an assignment that fulfills Constraints 1–4.

Proof (Sketch). First observe that—apart from the initializa-
tion in main()—each n.prio is assigned only once. Hence,
when prioMax() returns the maximum of priorities for
a given set of nodes, these priorities do not change any
more. Therefore, the fulfillment of Constraint 1 can be



Marian Boldt et al. 13

(1) procedure genPrioCode()
(2) forall n ∈ F do // Step 1
(3) forallm ∈ n.succ do
(4) annotate corresponding PAR statement with m.prio
(5)
(6) forall n ∈ N do // Step 2
(7) // Case p.prio < n.prio impossible !
(8) P := {p | n ∈ p.suc f , p.id = n.id}//id is the thread id
(9) prio := max({p.prio | p ∈ P} ∪ {p.prionext | p ∈ P ∩D})
(10) if p. prio > n. prio then
(11) insert “PRIO n.prio” at n
(12) // If n ∈ D: insert before n (e.g., PAUSE)
(13) // If n ∈ T : insert after n (e.g., a label)
(14)
(15) forall n ∈ D ∪ F do // Step 3
(16) // Case n. prio > n. prionext is already covered in Step 2
(17) if n. prio < n. prionext then
(18) insert “PRIO n.prionext” before n
(19) end

Figure 7: Algorithm to annotate code with priority settings
according to CKAG node priorities.

deduced directly from getPrio(). Similarly for Constraint 2.
Analogously getPrioNext() ensures that Constraints 3 and 4
are met.

Lemma 3 (Linearity). For a CKAG with N nodes and E
edges, the computational complexity of the priority assignment
algorithm is O(N + E).

Proof (Sketch). Apart from the initialization phase, which
has cost O(N ), the cost of the algorithm is dominated by
the recursive calls to getPrio(). The total number of calls is
bounded by E . With an amortization argument, where the
costs of each call are attributed to the callee, it is easy to see
that the overall cost of the calls is O(E).

Note also that while the size of the CKAG may be
quadratic in the size of the corresponding Esterel program in
the worst case, it is in practice (for a bounded abort nesting
depth) linear in the size of the program, resulting in an
algorithm complexity linear in the program size as well; see
also the discussion in Section 6.2.

After priorities have been computed for each reachable
node in the CKAG, we must generate code that ensures that
each thread is executed with the computed priority. This task
is relatively straightforward, Figure 7 shows the algorithm.

Another issue is the computation of thread ids, as
these are also considered in scheduling decisions in case
there are multiple threads of highest priority. This property
is exploited by the scheduling scheme presented here, to
avoid needless cycles. The compiler assigns increasing ids to
threads during a depth-first traversal of the thread hierarchy;
this is required in certain cases to ensure proper termination
of concurrent threads [4].

4.3. Optimizations

Prior to running the priority/scheduling algorithm discussed
before, the compiler tries to eliminate dependencies as much

as possible. It does that using two mechanisms. The first is to
try to be clever about the assignment of thread ids, as they
are also used for scheduling decisions if there are multiple
threads that have the highest priority (see Section 3.2). By
considering dependencies between different threads, simple
dependencies can be solved without any explicit priority
changes. The second mechanism is to determine whether two
nodes connected via a dependency are executable within the
same instant. This is in general a difficult problem to analyze.
We here only consider the special case where two nodes share
some (least common) fork node, and one node has only
instantaneous paths from that fork node, and the other node
only not instantaneous paths. In this case, the dependency
can be safely removed.

To preserve the signal-dependencies in the execution,
additional priority assignments (PRIO statements) might
have to be introduced by the compiler. To assure schedu-
lability, the program is completely dismantled, that is,
transformed into kernel statements. In this dismantled
graph the priority assignments are inserted. A subsequent
“undismantling” step before the computation of the WCRT
detects specific patterns in the CKAG and collapses them
to more complex instructions, such as AWAIT or SUSTAIN,
which are also part of the KEP instruction set.

The KEP compiler performs a statement dismantling
(see Section 3.1.2) as a preprocessing step. This facilitates
code selection and also helps to eliminate spurious depen-
dency cycles, and to hence increase the set of schedulable
(accepted) programs, as already discussed in Section 4. After
assigning priorities, the compiler tries again to “undisman-
tle” compound statements whenever this is possible. This
becomes apparent in the Edwards02 example; the AWAIT SL3

(Figure 3(c)) is the undismantled equivalent of the lines 7–9
in Edwards02-dism (Figure 3(b)).

The compiler suppresses PRIO statements for the main
thread, because the main thread never runs concurrently to
other threads. In the example, this avoids a PRIO 1 statement
at label A3.

Furthermore, the compiler performs dead code elimina-
tion, also using the traversal results of the priority assignment
algorithm. In the Edwards02 example, it determines that
execution never reaches the infinite loop in line 32 of
Edwards02-dism, because the second parallel thread never
terminates normally, and therefore does not generate code
for it.

However, there is still the potential for further optimiza-
tions, in particular regarding the priority assignment. In
the Edwards02 program, one could for example hoist the
PRIO 221 out of the enclosing loop, and avoid this PRIO
statement altogether by just starting thread T2 with priority
2 and never changing it again. Even more effective would be
to start T3 with priority 3, which would allow to undismantle
L08–L12 into a single AWAIT.

5. WORST-CASE REACTION TIME ANALYSIS

Given a KEP program, we define its WCRT as the maximum
number of KEP cycles executable in one instant. Thus
WCRT analysis requires finding the longest instantaneous
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(1) int getWcrtSeq(g) // Compute WCRT for sequential CKAG g
(2) forall n ∈ N do n.inst := n.next :=⊥ end
(3) getInstSeq(g.root)
(4) forall d ∈ D do getNextSeq(d) end
(5) return max ({g.root.inst}⋃{d.next : d ∈ D})
(6) end

(1) int getInstSeq(n) // Compute statements instantaneously reachable from node n
(2) if n.inst =⊥ then
(3) if n ∈ T ∪ L then
(4) n.inst := max {getInstSeq(c) : c ∈ n.suc c} + cycles(n.stmt)
(5) elif n ∈ D then
(6) n.inst := max {getInstSeq(c) : c ∈ n.suc w ∪ n.suc e} + cycles(n.stmt)
(7) fi
(8) fi
(9) return n.inst
(10) end

(1) int getNextSeq(d) // Compute statements instantaneously reachable
(2) if d.inst =⊥ then // from delay node d at tick start
(3) d.next := max {getInstSeq(c) : c ∈ d.suc c ∪ d.suc s} + cycles(d.stmt)
(4) fi
(5) return d.next
(6) end

Figure 8: WCRT algorithm, restricted to sequential programs. The nodes of a CKAG g are given by N = T ∪L∪D∪F ∪ J (see Section 3.3),
g.root indicates the first KEP statement. cycles(stmt) returns the number of instruction cycles to execute stmt, see third column in Table 1.

path in the CKAG, where the length metric is the number
of required KEP instruction cycles. We abstract from signal
relationships and might therefore consider unfeasible execu-
tions. Therefore the computed WCRT can be pessimistic. We
first present, in Section 5.1, a restricted form of the WCRT
algorithm that does not handle concurrency yet. The general
algorithm requires an analysis of instant reachability between
fork and join nodes, which is discussed in Section 5.2,
followed by the presentation of the general WCRT algorithm
in Section 5.3.

5.1. Sequential WCRT algorithm

First we present a WCRT analysis of sequential CKAGs (no
fork and join nodes). Consider again the ExSeq example in
Figure 1(a).

The longest possible execution occurs when the signal I
becomes present, as is the case in Tick 3 of the example trace
shown in Figure 1(d). Since the abortion triggered by I is
weak, the abort body is still executed in this instant, which
takes four instructions: PAUSEL2, EMITL3, the GOTOL4, and
PAUSEL2 again. Then it is detected that the body has finished
its execution for this instant, the abortion takes place, and
EMITL5 and HALTL6 are executed. Hence the longest possible
path takes six instruction cycles.

The sequential WCRT is computed via a depth-first
search (DFS) traversal of the CKAG, see the algorithm in
Figure 8. For each node n a value n.inst is computed, which
gives the WCRT from this node on in the same instant
when execution reaches the node. For a transient node, the
WCRT is simply the maximum over all children plus its own
execution time.

For noninstantaneous delay nodes, we distinguish two
cases within a tick: control can reach a delay node d, meaning
that the thread executing d has already executed some other
instructions in that tick, or control can start in d, meaning
that d must have been reached in some preceding tick. In the
first case, the WCRT from d on within an instant is expressed
by the d.inst variable already introduced. For the second case,
an additional value d.next stores the WCRT from d on within
an instant; “next” here expresses that in the traversal done
to analyze the overall WCRT, the d.next value should not
be included in the current tick, but in a next tick. Having
these two values ensures that the algorithm terminates in the
case of noninstantaneous loops: to compute d.next we might
need the value d.inst.

For a delay node, we also have to take abortions into
account. The handlers (i.e., their continuations—typically
the end of an associated abort/trap scope) of weak abor-
tions and exceptions are instantaneously reachable, so their
WCRTs are added to the d.inst value. In contrast, the handlers
of strong abortions cannot be executed in the same instant
the delay node is reached, because according to the Esterel
semantics an abortion body is not executed at all when the
abortion takes place. On the KEP, when a strong abort takes
place, the delay nodes where the control of the (still active)
threads in the abortion body resides are executed once, and
then control moves to the abortion handler. In other words,
control cannot move from a delay node d to a (strong)
abortion handler when control reaches d, but only when it
starts in d. Therefore, the WCRT of the handler of a strong
abortion is added to d.next, and not to d.inst.

We do not need to take a weak abortion into account
for d.next, because it cannot contribute to a longest path.
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An abortion in an instant when a delay node is reached
will always lead to a higher WCRT than an execution in a
subsequent instant where a thread starts executing in the
delay node.

The resulting WCRT for the whole program is computed
as the maximum over all WCRTs of nodes where the
execution may start. These are the start node and all delay
nodes. To take into account that execution might start
simultaneously in different concurrent threads, we also have
to consider the next value of join nodes.

Consider again the example ExSeq in Figure 1. Each node
n in the CKAG g is annotated with a label “W〈n.inst〉”
or, for a delay node, a label “W〈n.inst〉/〈n.next〉.” In the
following, we will refer to specific CKAG nodes with their
corresponding KEP assembler line numbers L〈n〉. It is
g.root = L1. The sequential WCRT computation starts
initializing the inst and next values of all nodes to ⊥
(line 2 in getWcrtSeq, Figure 8). Then getInstSeq(L1) is
called, which computes L1.inst := max {getInstSeq(L2)} +
cycles(WABORTL1). The call to getInstSeq(L2) computes
and returns L2.inst := cycles(PAUSEL2) + cycles(EMITL5) +
cycles(HALTL6) = 3, hence L1.inst := 3 + 2 = 5. Next,
in line 4 of getWcrtSeq, we call getNextSeq(L2), which
computes L2.next := getInstSeq(L3) + cycles(PAUSEL2).
The call to getInstSeq(L3) computes and returns L3.inst :=
cycles(EMITL3) + cycles(GOTOL4) + L2.inst = 1 + 1 + 3 =
5. Hence L2.next := 5 + 1 = 6, which corresponds to
the longest path triggered by the presence of signal I, as
we have seen earlier. The WCRT analysis therefore inserts
an “EMIT TICKLEN, #6” instruction before the body of
the KEP assembler program to initialize the TickManager
accordingly, as can be seen in Figure 1(c).

5.2. Instantaneous statement reachability for
concurrent Esterel programs

It is important for the WCRT analysis whether a join
and its corresponding fork can be executed within the
same instant. The algorithm for instantaneous statement
reachability computes for a source and a target node whether
the target is reachable instantaneously from the source.
Source and target have to be in sequence to each other, that
is, not concurrent, to get correct results.

In simple cases like EMIT or PAUSE the sequential control
flow successor is executed in the same instant respectively
next instant, but in general the behavior is more complicated.
The parallel, for example, will terminate instantaneously
if all subthreads are instantaneous or an EXIT will be
reached instantaneously; it is noninstantaneous if at least one
subthread is not instantaneous.

The complete algorithm is presented in detail elsewhere
[6]. The basic idea is to compute for each node three
potential reachability properties: instantaneous, noninstanta-
neous, exit-instantaneous. Note that a node might be as well
(potentially) instantaneous as (potentially) noninstantaneous,
depending on the signal context. Computation begins by
setting the instantaneous predicate of the source node to
true and the properties of all other nodes to false. When
any property is changed, the new value is propagated to

its successors. If we have set one of the properties to true,
we will not set it to false again. Hence the algorithm is
monotonic and will terminate. Its complexity is determined
by the amount of property changes which are bounded to
three for all nodes, so the complexity is O(3∗|N|) = O(|N|).

The most complicated computation is the property
instantaneous of a join node, because several attributes have
to be fulfilled for it to be instantaneous:

(i) For each thread, there has to be a (potentially)
instantaneous path to the join node.

(ii) The predecessor of the join node must not be an
EXIT, because EXIT nodes are no real control flow
predecessors. At the Esterel level, an exception (exit)
causes control to jump directly to the corresponding
exception handler (at the end of the correspond-
ing trap scope); this jump may also cross thread-
bounderies, in which case all threads that contain the
jump until the thread that contains the target of the
jump and all their sibling threads terminate.

To reflect this at the KEP level, an EXIT instruction
does not jump directly to the exception handler, but
first executes the JOIN instructions on the way, to give
them the opportunity to terminate threads correctly.
If a JOIN is executed this way, the statements that are
instantaneously reachable from it are not executed,
but control instead moves on to the exception
handler, or to another intermediate JOIN. To express
this, we use the third property besides instantaneous
and noninstantaneous: exit-instantaneous.

Roughly speaking, the instantaneous property is prop-
agated via for-all quantifier, noninstantaneous and exit-
instantaneous via existence-quantifier.

Most other nodes simply propagate their own properties
to their successors. The delay node propagates in addition its
noninstantaneous predicate to its delayed successors and exit
nodes propagate exit-instantaneous reachability, when they
themselves are reachable instantaneously.

5.3. GeneralWCRT algorithm

The general algorithm, which can also handle concurrency, is
shown in Figure 9. It emerges from the sequential algorithm
that has been described in Section 5.1 by enhancing it with
the ability to compute the WCRT of fork and join nodes.
Note that the instantaneous of a join node is needed only
by a fork node, all other transient nodes and delay nodes do
not use this value for their WCRT. The WCRT of the join
node has to be accounted for just once in the instantaneous
WCRT of its corresponding fork node, which allows the use
of a DFS-like algorithm.

The instantaneous WCRT of a fork node is simply
the sum of the instantaneously reachable statements of its
subthreads, plus the PAR statement for each subthread and
the additional PARE statement.

The join nodes, like delay nodes, also have a next value.
When a fork-join pair ( f , j) could be noninstantaneous,
we have to compute a WCRT j.next for the next instants
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(1) int getWcrt(g) // Compute WCRT for a CKAG g
(2) forall n ∈ N do n.inst := n.next :=⊥ end
(3) forall d ∈ D do getNext(d) end
(4) forall j ∈ J do getNext( j) end // Visit according to hierarchy (inside out)
(5) return max ({getInst(g.root)}⋃{n.next : n ∈ D ∪ J})
(6) end

(1) int getInst(n) // Compute statements instantaneously reachable from node n
(2) if n.inst :=⊥ then
(3) if n ∈ T ∪ L then
(4) t.inst := max {getInst(c) : c ∈ suc c \ J} + cycles(n.stmt)
(5) elif n ∈ D then
(6) n.inst := max {getInst(c) : c ∈ suc w ∪ suc e \ J} + cycles(n.stmt)
(7) elif n ∈ F then
(8) n.inst :=∑t∈n.suc c t.inst + cycles(n.par stmts) + cycles(PARE)
(9) prop := reachability(n, n. join) // Compute instantaneous reachability of join from fork
(10) if prop.instantaneous or prop.exit instantaneous then
(11) n.inst+ = getInst(n. join)
(12) elif prop.non instantaneous then
(13) n.inst+ = cycles(JOIN) // JOIN is always executed
(14) fi
(15) elif n ∈ J then
(16) n.inst := max {getInst(c) : c ∈ suc c ∪ suc e} + cycles(n.stmt)
(17) fi
(18) fi
(19) return n.inst
(20) end

(1) int getNext(n) // Compute statements instantaneously reachable
(2) if n.next :=⊥ then // from delay node d at tick start
(3) if n ∈ D then
(4) n.next := max {getInst(c) : c ∈ suc c ∪ suc s \ J ∧ c.id = n.id} + cycles(n.stmt)
(5) // handle inter thread successors by their according join nodes:
(6) for m ∈ {c ∈ suc c ∪ suc s \ J : c.id /= n.id} do
(7) j := according join node with j.id = m.id
(8) j.next = max ( j.next , getInst(m) + cycles(m.stmt) + cycles( j.stmt))
(9) end
(10) elif n ∈ J then
(11) prop := reachability(n. f ork, n) // Compute reachability predicates
(12) if prop.non instantaneous then
(13) n.next := max ((

∑

t∈n. f ork.suc c max{m.next : t.id = m.id}) + n.inst , n.next)
(14) fi
(15) fi
(16) fi
(17) return n.next
(18) end

Figure 9: General WCRT algorithm.

analogously to the delay nodes. Its computation requires first
the computation of all subthread next WCRTs. Note that in
case of nested concurrency these next values can again result
from a join node. But at the innermost level of concurrency
the next WCRT values all stem from delay nodes, which
will be computed before the join next values. The delay
next WCRT values are computed the same way as in the
sequential case except that only successors within of the same
thread are considered. We call successors of a different thread
interthread-successors and their WCRT values are handled by
the according join node. The join next value is the maximum
of all interthread-successor WCRT values and the sum of the
maximum next value for every thread.

If the parallel does not terminate instantaneously, all
directly reachable states are reachable in the next instant.
Therefore we have to add the execution time for all state-
ments that are instantaneously reachable from the join node.

The whole algorithm computes first the next WCRT
for all delay and join nodes; it computes recursively all
needed inst values. Thereafter the instantaneous WCRT for
all remaining nodes is computed. The result is simply the
maximum over all computed values.

Consider the example in Figure 2(a). First we note
that the fork/join pair is always noninstantaneous, due to
the PAUSEL6 statement. We compute L6.next = cycles
(PAUSEL6) + cycles(EMITL7) = 2. From the fork node L3, the
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module: inconsistent_path01
EMIT_TICKLEN, #6

[W6] PRESENT I, A0

[W5] EMIT R

[W4] A0

[W4] PRESENT I, A1

[W3] A1

[W2] GOTO A2

[W3] EMIT S

[W2] EMIT T

[W1] A2

[W1/1] HALT

t

f

t

f

(a) Inconsistent sequential path

[W11]

[W2] A0 [W3] A1

[W2] PRESENT I, A3 [W3] PRESENT I, A4

[W1/2] PAUSE [W1] A4

[W2] GOTO A5

[W1] A3 [W1/2] PAUSE

[W1] A5

[W1] NOTHING

[W1] NOTHING

[W2/6] JOIN 0

[W1/1] HALT

module: inconsistent_path
EMIT_TICKLEN, #11

PAR∗

1
1

t
t

f

f

(b) Inconsistent parallel path

module: par_unreachable_path
EMIT_TICKLEN, #9

[W1] A0

[W1] A1

[W1/4] PAUSE

[W1/2] PAUSE

[W3] EMIT S

[W1/3] PAUSE

[W2] EMIT T

[W2] EMIT U

[W1/2] PAUSE

[W1] EMIT V

[W1] NOTHING

[W2/9] JOIN 0

[W1/1] HALT

[W6] PAR∗

1
1

(c) Unreachable configu-
ration

Figure 10: Unreachable path examples.

PAR and PARE statements, the instantaneous parts of both
threads and the JOIN are executed, hence L3.inst = 2 ×
cycles(PAR)+cycles(PARE)+cycles(JOIN)+L4.inst+L5.inst =
2+1+1+1+2 = 7. It turns out that the WCRT of the program
is L8.next = L6.next + L8.inst = 2 + 9 = 11. Note that the
JOIN statement is executed twice.

A known difficulty when compiling Esterel programs
is that due to the nesting of exceptions and concurrency,
statements might be executed multiple times in one instant.
This problem, also known as reincarnation, is handled
correctly by our algorithm. Since we compute nested joins
from inside to outside, the same statement may effect both
the instantaneous and noninstantaneous WCRT, which are
added up in the next join. This exactly matches the possible
control-flow in case of reincarnation. Even when a statement
is executed multiple times in an instant, we compute a correct
upper bound for the WCRT.

Regarding the complexity of the algorithm, we observe
that for each node its WCRT’s inst and next are computed
at most once, and for all fork nodes a fork-join reachability
analysis is additionally made, which has itself O(|N|). So we
get altogether a complexity of O(|N|+|D|+|J|)+O(|F|∗|N|)
= O(2∗|N|) + O(|N|2) = O(|N|2).

5.4. Unreachable paths

Signal informations are not taken into account in the
algorithms described above. This can lead to a conserva-

tive (too high) WCRT, because the analysis may consider
unreachable paths that can never be executed. In Figure 10(a)
we see an unreachable path increasing unnecessarily the
WCRT because of demanding signal I present and absent
instantaneously, which is inconsistent. Nevertheless there is
no dead code in the graph, but only two possible paths
regarding to path signal predicates.

Figure 10(b) shows an unreachable parallel path that
leads to a too high WCRT of the fork node, because the sub-
paths cannot be executed at the same time. Furthermore, the
parallel is declared as possibly instantaneous, even though it
is not. Therefore, all statements which are instantaneously
reachable from the join node are also added.

Another unreachable parallel path is shown in
Figure 10(c). This path is unreachable not because of
signal informations but because of instantaneous behavior:
the maximal paths of the two threads are never executed
in the same instant. In other words, the system is never in
a configuration (collection of states) such that both code
segments become activated together. Instead of taking for
each thread the maximum next WCRT and summing up, it
would be more exact to sum up over all threads next WCRT’s
executable instantaneously and then taking the maximum
of these sums. Therefore we would have to enhance the
reachability algorithm of the ability to determine how many
ticks later a statement could be executed behind another.
However, in this case the possible tick counts can become
arbitrarily high for each node, so we would get a higher
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Table 2: Experimental results for the compiler and priority assignment. For each benchmark it lists the lines of code (LoC) for the source
code, the lines of generated KEP assembler, the number of dependencies, the maximal nesting depth of abort scopes, the maximal degree of
concurrency, the number of generated PRIO statements, the maximum priority of any thread, and the times for computing the priorities and
for the overall compilation.

Esterel KEP tassign tcomp

Module name LoC Lines Dependencies Depth Max.Conc #PRIO Max.Prio [ms] [ms]

abcd 152 167 36 2 4 30 3 2.7 14.9

abcdef 232 251 90 2 6 48 3 4.2 63.8

eight buttons 332 335 168 2 8 66 3 5.9 72.3

channel protocol 57 61 8 3 4 10 2 0.8 5.3

reactor control 24 32 5 2 3 0 — 0.4 3.9

runner 26 38 2 2 2 0 — 0.4 4.4

ww button 94 134 6 3 4 6 2 1.6 10.0

tcint 410 472 65 5 17 45 3 17.3 112.2

complexity and a termination problem. Our analysis is
conservative in simply assuming that all concurrent paths
may occur in the same instant, and that all can be executed
in the same instant as the join.

6. EXPERIMENTAL RESULTS

To evaluate the compilation and WCRT analysis approach
presented here, we have implemented a compiler for the KEP
based on the CEC infrastructure [34]. We will discuss in turn
our validation approach and the quantitative results for the
compiler, specifically the priority assignment scheme, and for
the WCRT estimation.

6.1. Validation

To validate the correctness of the compilation scheme, as well
as of the KEP itself, we have collected a fairly substantial
validation suite, currently containing some 500 Esterel
programs. These include all benchmarks made available to
us, such as the Estbench [37], and other programs written
to test specific situations and corner cases. An automated
regression procedure compiles each program into KEP
assembler, downloads it into the KEP, provides an input trace
for the program, and records the output at each step. This
output is compared to the results obtained from running the
same program on a work station, using Esterel Studio.

For each program, any differences in the output traces
between the KEP results and the workstation/Esterel Studio
results are recorded. Furthermore, the average-case reaction
time (ACRT) and WCRT for each program are measured.
For these measurements, the KEP is operating in “freely
running” mode, that is, TICKLEN is left unspecified (see
Section 3.2); the default would be to set TICKLEN according
to the (conservatively) estimated WCRT,in which case the
measured ACRT and WCRT values would be equal to the
estimated WCRT. At this point, the full benchmark suite runs
through without any differences in output, and the analyzed
WCRT is always safe; that is, not lower than the measured
WCRT.

Esterel Studio is also used to generate the input trace,
using the “full transition coverage” mode. Note that the
traces obtained this way still did not cover all possible paths.
However, at this point we consider it very probable that a
compilation approach that handles all transition coverage
traces correctly would also handle the remaining paths. We
also feel that this level of validation probably already exceeds
the current state of the practice.

6.2. Compilation and priority assignment

As the emphasis here is more on the compilation approach
and less on the underlying execution platform, we here
refrain from a comparison of execution times and code sizes
on the KEP versus traditional, nonreactive platforms; such
a comparison can be found elsewhere [4]. Instead, we are
here primarily interested in static code characteristics, and in
particular how well the priority assignment algorithm works.
Table 2 summarizes the experimental results for a selection of
programs taken from the Estbench.

We note first that the generated code is very compact,
and that the KEP assembler line count is comparable to
the Esterel source. This is primarily a reflection on the KEP
ISA, which provides instructions that directly implement
most of the Esterel statements. Furthermore, the relationship
between source code and KEP assembler size (and CKAG
size) seems fairly linear. We note that the connection between
program size and number of (interthread) dependencies is
rather loose. For example, eight buttons is smaller than
tcint, but contains more than twice the number of dependen-
cies. Next, we see that the maximal abort nesting depth tends
to be limited, only in one case it exceeded three. The degree
of concurrency again varied widely; not too surprisingly, the
degree of concurrency also influenced the required number
of PRIO statements (which—potentially—induce context
switches). However, overall the number of generated PRIO
statements seems acceptable compared to overall code size,
and there were cases where we did not need PRIO at all,
despite having several interthread dependencies. This reflects
that the thread id assignment mechanism (see Section 4.3) is
already fairly efficient in resolving dependencies. Similarly,
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the assigned priorities tended to be low in general, for none
of the benchmarks they exceeded three. Finally, the priority
assignment algorithm and the overall compilation are quite
fast, generally in the millisecond range.

6.3. Accuracy ofWCRT analysis

As mentioned before, the WCRT analysis is implemented
in the KEP compiler, and is used to automatically insert a
correct EMIT TICKLEN instruction at the beginning of the
program, such that the reaction time is constant and as
short as possible, without ever raising a timing violation by
the TickManager. As discussed in Section 6.1, we measured
the maximal reaction times and compared it to the com-
puted value. Figure 11 provides a qualitative comparison of
estimated and measured WCRT and measured ACRT, more
details are given in Table 3. We have never underestimated
the WCRT, and our results are on average 22% too high,
which we consider fairly tight compared to other reported
WCET results [22]. For each program, the lines of code,
the computed WCRT and the measured WCRT with the
resulting difference are given. We also give the average WCRT
analysis time on a standard PC (AMD Athlon XP, 2.2 GHz,
512 KB Cache, 1 GB Main Memory); as the table indicates,
the analysis takes only a couple of milliseconds.

The table also compares the ACRT with the WCRT. The
ACRT is on average about two thirds of the WCRT, which is
relatively high compared to traditional architectures. In other
words, the worst case on the KEP is not much worse than
the average case, and padding the tick length according to
the WCRT does not waste too much resources. On the same
token, designing for worst-case performance, as typically
must be done for hard real-time systems, does not cause
too much overhead compared to the typical average-case
performance design. Finally, the table also lists the number
of scenarios generated by Esterel-studio and accumulated
logical tick count for the test traces.

7. CONCLUSIONS AND FURTHERWORK

We have presented a compiler for the KEP, and its integrated
WCRT analysis. Since the KEP ISA is very similar to Esterel,
the compilation of most constructs is straightforward. But
the computation of priorities for concurrent threads is
not trivial. The thread scheduling problem is related to
the problem of generating statically scheduled code for
sequential processors, for which Edwards has shown that
finding efficient schedules is NP hard [9]. We encounter
the same complexity, even though our performance metrics
for an optimal schedule are a little different. The classi-
cal scheduling problem tries to minimize the number of
context switches. On the KEP, context switches are free,
because no state variables must be stored and resumed.
However, to ensure that a program meets its dependency-
implied scheduling constraints, threads must manage their
priorities accordingly, and it is this priority switching which
contributes to code size and costs an extra instruction
at run time. Minimizing priority switches is related to
classical constraint-based optimization problems as well as to
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Figure 11: Estimated and measured worst- and average-case
reaction times.

compiler optimization problems such as loop invariant code
motion.

We also have presented the WCRT analysis of Esterel
programs. The restricted nature of Esterel and its sound
mathematical semantics allow formal analysis of Esterel
programs and make the computation of a WCRT for
Esterel programs achievable. Our analysis is incorporated
in the compiler and uses its internal graph representation,
the concurrent KEP assembler graph (CKAG). In a first
step we compute whether concurrent threads terminate
instantaneously, thereafter we are able to compute for each
statement how many instructions are maximally executable
from it in one logical tick. The maximal value over all
nodes gives us the WCRT of the program. The analysis
considers concurrency and the multiple forms of preemption
that Esterel offers. The asymptotic complexity of the WCRT
analysis algorithm is quadratic in the size of the program;
however, experimental results indicate that the overhead
of WCRT analysis as part of compilation is negligible. We
have implemented this analysis into the KEP compiler, and
use it to automatically compute an initialization value for
the KEP’s TickManager. This allows to achieve a high- and
constant-response frequency to the environment, and can
also be used to detect hardware errors by detecting timing
overruns.

Our analysis is safe, that is, conservative in that it never
underestimates the WCRT, and it does not require any
user annotations to the program. In our benchmarks, it
overestimates the WCRT on average by about 22%. This is
already competitive with the state of the art in general WCET
analysis, and we expect this to be acceptable in most cases.
However, there is still significant room for improvement. So
far, we are not taking any signal status into account, therefore
our analysis includes some unreachable paths. Considering
all signals would lead to an exponential growth of the
complexity, but some local knowledge should be enough to
rule out most unreachable paths of this kind. Also a finer
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Table 3: Detailed comparison of WCRT/ACRT times. The WCe and WCm data denote the estimated and measured WCRT, respectively,
measured in instruction cycles. The ratio Δe/m := WCe/WCm − 1 indicates by how much our analysis overestimates the WCRT. ACm is
the measured average case reaction time (ACRT), ACm/WCm gives the ratio to the measured WCRT. Test cases and ticks are the number of
different scenarios and logical ticks that were executed, respectively.

Esterel WCRT tan ACRT

Module name LoC WCe WCm Δe/m [ms] ACm ACm/WCm Test cases Ticks

abcd 152 47 44 7% 1.0 27 61% 161 673

abcdef 232 71 68 4% 1.5 41 60% 1457 50938

eight buttons 57 41 38 8% 0.4 18 47% 114 556

channel protocol 57 41 38 8% 0.4 18 47% 114 556

reactor control 24 17 14 21% 0.2 10 71% 6 20

runner 26 12 10 20% 0.3 2 20% 131 2548

ww button 94 31 18 72% 1.0 12 67% 8 37

tcint 410 192 138 39% 2.8 86 62% 148 1325

grained analysis of which parts of parallel threads can be
executed in the same instant could lead to better results.
However, it is not obvious how to do this efficiently.

Our analysis is influenced by the KEP in two ways: the
exact number of instructions for each statement and the
way parallelism is handled. At least for nonparallel programs
our approach should be of value for other compilation
methods for Esterel as well, for example, simulation-based
code generation. A virtual machine with similar support
for concurrency could also benefit from our approach. We
would also like to generalize our approach to handle different
ways to implement concurrency. A WCRT analysis directly
on the Esterel level gives information on the longest possible
execution path. Together with a known translation to C, this
WCRT information could be combined with a traditional
WCET analysis, which takes caches and other hardware
details into account.

To conclude, while we think that the approaches for
compilation and WCRT analysis presented here are another
step towards making reactive processing attractive, there
are still numerous paths to be investigated here, including
the application of these results towards classical software
synthesis. A further issue, which we have not investigated
here at all, is to formalize the semantics of reactive ISAs.
This would help to deepen the understanding of reactive
processing platforms, and could open the door towards
formal correctness proofs down to the execution platform.
As the ISA provided by the KEP allows to execute programs
that are not constructive in the classical sense (such as signal
emissions after the signals are tested), and yet have a well-
defined outcome (i.e., are deterministic), we also envision
that this could ultimately lead towards new, interesting
synchronous models of computation.
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