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Computing solutions used in mobile communications equipment are similar to those in personal and mainframe computers.
The key differences between the implementations at chip level are the low leakage silicon technology and lower clock frequency
used in mobile devices. The hardware and software architectures, including the operating system principles, are strikingly similar,
although the mobile computing systems tend to rely more on hardware accelerators. As the performance expectations of mobile
devices are increasing towards the personal computer level and beyond, power efficiency is becoming a major bottleneck. So far,
the improvements of the silicon processes in mobile phones have been exploited by software designers to increase functionality
and to cut development time, while usage times, and energy efficiency, have been kept at levels that satisfy the customers. Here
we explain some of the observed developments and consider means of improving energy efficiency. We show that both processor
and software architectures have a big impact on power consumption. Properly targeted research is needed to find the means to
explicitly optimize system designs for energy efficiency, rather than maximize the nominal throughputs of the processor cores
used.
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1. INTRODUCTION

During the brief history of GSM mobile phones, the line
widths of silicon technologies used for their implementa-
tion have decreased from 0.8 µm in the mid 1990s to around
0.13 µm in the early 21st century. In a typical phone, a basic
voice call is fully executed in the baseband signal processing
part, making it a very interesting reference point for compar-
isons as the application has not changed over the years, not
even in the voice call user interface. Nokia gives the “talk-
time” and “stand-by time” for its phones in the product spec-
ifications, measured according to [1] or an earlier similar
convention. This enables us to track the impacts of techno-
logical changes over time.

Table 1 documents the changes in the worst case talk-
times of high volume mobile phones released by Nokia be-
tween 1995 and 2003 [2], while Table 2 presents approxi-
mate characteristics of CMOS processes that have made great
strides during the same period [3–5]. We make an assump-
tion that the power consumption share of the RF power am-
plifier was around 50% in 1995. As the energy efficiency

of the silicon process has improved substantially from 1995
to 2003, the last phone in our table should have achieved
around an 8-hour talk-time with no RF energy efficiency im-
provements since 1995.

During the same period (1995–2003) the gate counts
of the DSP processor cores have increased significantly, but
their specified power consumptions have dropped by a fac-
tor of 10 [4] from 1mW/MIPS to 0.1mW/MIPS. The phys-
ical sizes of the DSP cores have not essentially changed. Ob-
viously, processor developments cannot explain why the en-
ergy efficiency of voice calls has not improved. On the mi-
crocontroller side, the energy efficiency of ARM7TMDI, for
example, has improved more than 30-fold between 0.35 and
0.13 µm CMOS processes [5].

In order to offer explanations, we need to briefly analyze
the underlying implementations. Figure 1 depicts stream-
lined block diagrams of baseband processing solutions of
three product generations of GSM mobile phones. The DSP
processor runs radio modem layer 1 [6] and the audio codec,
whereas the microcontroller (MCU) processes layers 2 and 3
of the radio functionality and takes care of the user interface.
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Table 1: Talk times of three mobile phones from the same manu-
facturer.

Year Phone model Talk time Stand by time Battery capacity

1995 2110 2 h 40min 30 h 550 mAh

1998 6110 3 h 270 h 900 mAh

2003 6600 3 h 240 h 850 mAh

Table 2: Past and projected CMOS processes development.

Design rule ( nm) Supply voltage (V)
Approximate normalized
power∗delay/gate

800 (1995) 5.0 45

500 (1998) 3.3 15

130 (2003) 1.5 1

60 (2010) 1 0.35

During voice calls, both the DSP and MCU are therefore ac-
tive, while the UI introduces an almost insignificant portion
of the load.

According to [7] the baseband signal processing ranks
second in power consumption after RF during a voice call,
and has a significant impact on energy efficiency. The base-
band signal processing implementation of 1995 was based on
the loop-type periodically scheduled software architecture of
Figure 2 that has almost no overhead. This solution was orig-
inally dictated by the performance limitations of the proces-
sor used. Hardware accelerators were used without interrupts
by relying on their deterministic latencies; this was an inher-
ently efficient and predictable approach. On the other hand,
highly skilled programmers, who understood the hardware
in detail, were needed. This approach had to be abandoned
after the complexity of DSP software grew due to the need
to support an increasing number of features and options and
the developer population became larger.

In 1998, the DSP and the microcontroller taking care
of the user interface were integrated on to the same chip,
and the DSP processors had become faster, eliminating some
hardware accelerators [8]. Speech quality was enhanced at
the cost of some additional processing on the DSP, while
middleware was introduced on the microcontroller side.

The implementation of 2003 employs a preemptive oper-
ating system in the microcontroller. Basic voice call process-
ing is still on a single DSP processor that now has a multilevel
memory system. In addition to the improved voice call func-
tionality, lots of other features are supported, including en-
hanced data rate for GSM evolution (EDGE), and the num-
ber of hardware accelerators increased due to higher data
rates. The accelerators were synchronized with DSP tasks via
interrupts. The software architecture used is ideal for large
development teams, but the new functionalities, although
idling during voice calls, cause some energy overhead.

The need for better software development processes has
increased with the growth in the number of features in the
phones. Consequently, the developers have endeavoured to
preserve the active usage times of the phones at a constant
level (around three hours) and turned the silicon level ad-
vances into software engineering benefits.

Table 3: An approximate power budget for a multimedia capable
mobile phone in 384 kbit/s video streaming mode.

System component
Energy consumption

(mW)

RF receiver and cellular modem 1200

Application processors
and memories

600

User interface (audio, display,
keyboard; with backlights)

1000

Mass memories 200

Total 3000

In the future, we expect to see advanced video capabili-
ties and high speed data communications in mobile phones.
These require more than one order of magnitude more com-
puting power than is available in recent products, so we have
to improve the energy efficiency, preferably at faster pace
than silicon advances.

2. CHARACTERISTIC MODERNMOBILE
COMPUTING TASKS

Mobile computing is about to enter an era of high data rate
applications that require the integration of wireless wide-
band data modems, video cameras, net browsers, and phones
into small packages with long battery powered operation
times. Even the small size of phones is a design constraint
as the sustained heat dissipation should be kept below 3W
[9]. In practice, much more than the capabilities of current
laptop PCs is expected using around 5% of their energy and
space, and at a fraction of the price. Table 3 shows a possible
power budget for a multimedia phone [9]. Obviously, a 3.6 V
1000mAh Lithium-ion battery provides only 1 hour of active
operation time.

To understand how the expectations could be met, we
briefly consider the characteristics of video encoding and
3GPP signal processing. These have been selected as repre-
sentatives of soft and hard real time applications, and of dif-
fering hardware/software partitioning challenges.

2.1. Video encoding

The computational cost of encoding a sequence of video im-
ages into a bitstream depends on the algorithms used in the
implementation and the coding standard. Table 4 illuminates
the approximate costs and processing requirements of cur-
rent common standards when applied to a sequence of 640-
by-480 pixel (VGA) images captured at 30 frames/s. The cost
of an expected “future standard” has been linearly extrapo-
lated based on those of the past.

If a software implementation on an SISD processor is
used, the operation and instructioncounts are roughly equal.
This means that encoding requires the fetching and decoding
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Figure 1: Typical implementations of mobile phones from 1995 to 2003.
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Figure 2: Low overhead loop-type software architecture for GSM baseband.

Table 4: Encoding requirements for 30 frames/s VGA video.

Video standard Operations/pixel
Processing speed

(GOPS)

MPEG-4 (1998) 200–300 2-3

H.264-AVC (2003) 600–900 6–10

“Future” (2009-10) 2000–3000 20–30

of at least 200–300 times more instructions than pixel data.
This has obvious implications from energy efficiency point
of view, and can be used as a basis for comparing implemen-
tations on different programmable processor architectures.

Figure 3 illustrates the Mpixels/s per silicon area (mm2)
and power (W) efficiencies of SISD, VLIW, SIMD, and the
monolithic accelerator implementations of high image qual-
ity (> 34 dB PSNR) MPEG-4 VGA (advanced simple profile)
video encoders. The quality requirement has been set to be
relatively high so that the greediest motion estimation algo-
rithms (such as a three-step search) are not applicable, and
the search area was set to 48-by-48 pixels which fits into the
on-chip RAMs of each studied processor.

All the processors are commercial and have instruc-
tions set level support for video encoding to speed-up at
least summed absolute differences (SAD) calculations for 16-
by-16 pixel macro blocks. The software implementation for
the SISD is an original commercial one, while for VLIW
and SIMD the motion estimators of commercial MPEG-4
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Figure 3: Area (Mpixels/s/mm2) and energy efficiencies (Mpix-
els/s/W) of comparable MPEG-4 encoder implementations.

ASP codecs were replaced by iterative full search algorithms
[10, 11]. As some of the information on processors was ob-
tained under confidentiality agreements, we are unable to
name them in this paper. The monolithic hardware acceler-
ator is a commercially available MPEG-4 VGA IP block [12]
with an ARM926 core.

In the figure, the implementations have been normal-
ized to an expected low power 1V 60 nm CMOS process.
The scaling rule assumes that power consumption is propor-
tional to the supply voltage squared and the design rule, while
the die size is proportional to the design rule squared. The
original processors were implemented with 0.18 and 0.13 µm
CMOS.
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Table 5: Relative instruction fetch rates and control unit sizes versus area and energy efficiencies.

Solution
Instruction
fetch/decode rate

Control unit size Area efficiency Energy efficiency

SISD Operation rate Relatively small Lowest Lowest

VLIW Operation rate Relatively small Average Average

SIMD
Less than
operation rate

Relatively small Highest Good

Monolithic
accelerator

Very low
(control code)

Very small Average Highest

We notice a substantial gap in energy efficiency between
the monolithic accelerator and the programmed approaches.
For instance, around 40mWof power is needed for encoding
10Mpixels/s using the SIMD extended processor, while the
monolithic accelerator requires only 16mW. In reality, the
efficiency gap is even larger as the data points have been de-
termined using only a single task on each processor. In prac-
tice, the processors switch contexts between tasks and serve
hardware interrupts, reducing the hit rates of instruction and
data caches, and the branch predictionmechanism. This may
easily drop the actual processing throughput by half, and, re-
spectively, lowers the energy efficiency.

The sizes of the control units and instruction fetch rates
needed for video encoding appear to explain the data points
of the programmed solutions as indicated by Table 5. The
SISD and VLIW have the highest fetch rates, while the SIMD
has the lowest one, contributing to energy efficiency. The ex-
ecution units of the SIMD and VLIW occupy relatively larger
portions of the processor chips: this improves the silicon area
efficiency as the control part is overhead. The monolithic ac-
celerator is controlled via a finite state machine, and needs
processor services only once every frame, allowing the pro-
cessor to sleep during frames.

In this comparison, the silicon area efficiency of the hard-
ware accelerated solution appears to be reasonably good, as
around 5mm2 of silicon is needed for achieving real-time en-
coding for VGA sequences. This is better than for the SISD
(9mm2) and close to the SIMD (around 4mm2). However,
the accelerator supports only one video standard, while sup-
port for another one requires another accelerator, making
hardware acceleration in this case the most inefficient ap-
proach in terms of silicon area and reproduction costs.

Consequently, it is worth considering whether the video
accelerator could be partitioned in a manner that would en-
able re-using its components in multiple coding standards.
The speed-up achieved from these finer grained approaches
needs to be weighted against the added overheads such as the
typical 300 clock cycle interrupt latency that can become sig-
nificant if, for example, an interrupt is generated for each 16-
by-16 pixel macroblock of the VGA sequence.

An interesting point for further comparisons is the
hibrid-SOC [13], that is, the creation of one research team.
It is a multicore architecture, based on three programmable
dedicated core processors (SIMD, VLIW, and SISD), in-
tended for video encoding and decoding, and other high
bandwidth applications. Based on the performance and im-

Table 6: 3GPP receiver requirements for different channel types.

Channel type Data rate
Processing speed

(GOPS)

Release 99 DCH channel 0.384Mbps 1-2

Release 5 HSDPA channel 14.4Mbps 35–40

“Future 3.9G” OFDM channel 100Mbps 210–290

plementation data, it comes very close to the VLIW device
in Figure 2 when scaled to the 60 nm CMOS technology of
Table 2, and it could rank better if explicitly designed for low
power operation.

2.2. 3GPP baseband signal processing

Based on its timing requirements, the 3GPP baseband signal
processing chain is an archetypal hard real-time application
that is further complicated by the heavy computational re-
quirements shown in Table 6 for the receiver. The values in
the table have been determined for a solution using turbo
decoding and they do not include chip-level decoding and
symbol level combining that further increase the processing
needs.

The requirements of the high speed downlink packet
access (HSDPA) channel that is expected to be introduced
in mobile devices in the near future characterize current
acute implementation challenges. Interestingly, the opera-
tion counts per received bit for each channel are roughly in
the same magnitude range as with video encoding.

Figure 4 shows the organization of the 3GPP receiver
processing and illuminates the implementation issues. The
receiver data chain has time critical feedback loops imple-
mented in the software; for instance, the control channel HS-
SCCH is used to control what is received, and when, on the
HS-DSCH data channel. Another example is the power con-
trol information decoded from “release 99 DSCH” channel
that is used to regulate the transmitter power 1500 times
per second. Furthermore, the channel code rates, channel
codes, and interleaving schemesmay change anytime, requir-
ing software control for reconfiguring the hardware blocks of
the receiver, although for clarity this is not indicated in the
diagram.

The computing power needs of 3GPP signal processing
have so far been satisfied only by hardware at an acceptable



O. Silven and K. Jyrkkä 5
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energy efficiency level. Software implementations for turbo
decoding that meet the speed requirement do exist; for in-
stance, in [14] the performance of analog devices’ Tiger-
SHARC DSP processor is demonstrated. However, it falls
short of the energy efficiency needed in phones and is more
suitable for base station use.

For energy efficiency, battery powered systems have to
rely on hardware, while the tight timings demand the em-
ployment of fine grained accelerators. A resulting large in-
terrupt load on the control processors is an undesired side
effect. Coarser grain hardware accelerators could reduce this
overhead, but this is an inflexible approach and riskier when
the channel specifications have not been completely frozen,
but the development of hardware must begin.

With reservations on the hard real-time features, the re-
sults of the above comparison on the relative efficiencies of
processor architectures for video encoding can be extended
to 3GPP receivers. Both tasks have high processing require-
ments and the grain size of the algorithms is not very differ-
ent, so they could benefit from similar solutions that improve
hardware reuse and energy efficiency. In principle, the pro-
cessor resources can be used more efficiently with the softer
real-time demands of video coding, but if fine grained accel-
eration is used instead of a monolithic solution, it becomes a
hard real-time task.

3. ANALYSIS OF THE OBSERVED DEVELOPMENT

Based on our understanding, there is no single action that
could improve the talk-times of mobile phones and usage
times of future applications. Rather there are multiple inter-
acting issues for which balanced solutions must be found. In
the following, we analyze some of the factors considered to
be essential.

3.1. Changes in voice call application

The voice codec in 1995 required around 50% of the opera-
tion count of the more recent codec that provides improved

voice quality. As a result, the computational cost of the ba-
sic GSM voice call may have even more than doubled [15].
This qualitative improvement has in part diluted the benefits
obtained through advances in semiconductor processes, and
is reflected by the talk-time data given for the different voice
codec by mobile terminal manufacturers. It is likely that the
computational costs of voice calls will increase even in the
future with advanced features.

3.2. The effect of preemptive real-time
operating systems

The dominating scheduling principle used in embedded sys-
tems is “rate monotonic analysis (RMA)” that assigns higher
static priorities for tasks that execute at higher rates. When
the number of tasks is large, utilizing the processor at most
up to 69% guarantees that all deadlines are met [16]. If more
processor resources are needed, then more advanced analysis
is needed to learn whether the scheduling meets the require-
ments.

In practice, both our video and 3GPP baseband exam-
ples are affected by this law. A video encoder, even when fully
implemented in software, is seldom the only task in the pro-
cessor, but shares its resources with a number of other tasks.
The 3GPP baseband processing chain consists of several si-
multaneous tasks due to time critical hardware/software in-
teractions.

With RMA, the processor utilization limit alone may de-
mand even 40% higher clock rates than was necessary with
the static cyclic scheduling used in early GSM phones in
which the clock could be controlled very flexibly. Now, due
to the scheduling overhead that has to be added to the task
durations, a 50% clock frequency increase is close to real-
ity.

We admit that this kind of comparison is not completely
fair. Static cyclic scheduling is no longer usable as it is un-
suitable for providing responses for sporadic events within
a short fixed time, as required by the newer features of the
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Figure 5: Hardware acceleration via instruction set extension.

phones. The use of dynamic priorities and earliest-deadline-
first (EDF) or least-slack algorithm [17] would improve pro-
cessor utilization over RMA, although this would be at the
cost of slightly higher scheduling overheads that can be sig-
nificant if the number of tasks is large. Furthermore, embed-
ded software designers wish to avoid EDF scheduling, be-
cause variations in cache hit ratios complicate the estimation
of the proximity of deadlines.

3.3. The effect of context switches on cache and
processor performance

The instruction and data caches of modern processors im-
prove energy efficiency when they perform as intended.
However, when the number of tasks and the frequency of
context switches is high, the cache-hit rates may suffer. Ex-
periments [18] carried out using the MiBench [19] embed-
ded benchmark suite on an MIPS 4KE-type instruction set
architecture revealed that with a 16 kB 4-way set associative
instruction cache the hit-rate averaged around 78% immedi-
ately after context switches and 90% after 1000 instructions,
while 96% was reached after the execution of 10 000 instruc-
tions.

Depending on the access time differential between the
main memory and the cache, the performance impact can
be significant. If the processor operates at 150MHz with a
50-nanosecond main memory and an 86% cache hit rate,
the execution time of a short task slice (say 2000 instruc-
tions) almost doubles. Worst of all, the execution time of the
same piece of code may fluctuate from activation to activa-
tion, causing scheduling and throughput complications, and
may ultimately force the system implementers to increase the
processor clock rate to ensure that the deadlines are met.

Depending on the implementations, both video encoder
and 3GPP baseband applications operate in an environment
that executes up to tens of thousands of interrupts and con-
text switches in a second. Although this facilitates the devel-
opment of systems with large teams, the approach may have
a significant negative impact on energy efficiency.

More than a decade ago (1991), Mogul and Borg [20]
made empirical measurements on the effects of context

switches on cache and system performance. After a par-
tial reproduction of their experiments on a modern proces-
sor, Sebek [21] comments “it is interesting that the cache
related preemption delay is almost the same,” although
the processors have became a magnitude faster. We may
make a similar observation about GSM phones and voice
calls: current implementations of the same application re-
quire more resources than in the past. This cycle needs to
be broken in future mobile terminals and their applica-
tions.

3.4. The effect of hardware/software interfacing

The designers of mobile phones aim to create common plat-
forms for product families. They define application pro-
gramming interfaces that remain the same, regardless of sys-
tem enhancements and changes in hardware/software parti-
tioning [8]. This has made middleware solutions attractive,
despite worries over the impact on performance. However,
the low level hardware accelerator/software interface is often
the most critical one.

Two approaches are available for interfacing hardware
accelerators to software. First, a hardware accelerator can
be integrated into the system as an extension to the in-
struction set, as illustrated with Figure 5. In order to make
sense, the latency of the extension should be in the same
range as the standard instructions, or, at most, within a
few instruction cycles, otherwise the interrupt response time
may suffer. Short latency often implies large gate count and
high bus bandwidth needs that reduce the economic via-
bility of the approach, making it a rare choice in mobile
phones.

Second, an accelerator may be used in a peripheral de-
vice that generates an interrupt after completing its task. This
principle is demonstrated in Figure 6, which also shows the
role of middleware in hiding details of the hardware. Note
that the legend in the picture is in the order of priority levels.

If the code in the middleware is not integrated into
the task, calls to middleware functions are likely to reduce
the cache hit rate. Furthermore, to avoid high interrupt
overheads, the execution time of the accelerators should
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Table 7: Energy efficiencies and silicon areas of ARM processors.

Processor
Processor max. clock
frequency (MHz)

Silicon area (mm2)
Power consumption
(mW/MHz)

ARM9 (926EJ-S) 266 4.5 0.45

ARM10 (1022E) 325 6.9 0.6

ARM11 (1136J-S) 550 5.55 0.8

preferably be thousands of clock cycles. In practice, this ap-
proach is used even with rather short latency accelerators, as
long as it helps in achieving the total performance target. The
latencies from middleware, context switches, and interrupts
have obvious consequences for energy efficiency.

Against this background, it is logical that the monolithic
accelerator turned out to be the most energy efficient solu-
tion for video encoding in Figure 3. From the point of view,
the 3GPP baseband a key to energy efficient implementation
in a given hardware lies in pushing down the latency over-
heads.

It is rather interesting that anything in between 1-2 cycle
instruction set extensions and peripheral devices executing
thousands of cycles can result in grossly inefficient software.
If the interrupt latency in the operating system environment
is around 300 cycles and 50 000 interrupts are generated per
second, 10% of the 150MHz processor resources are swal-
lowed by this overhead alone, and on top of this we havemid-
dleware costs. Clearly, we have insufficient expertise in this
bottleneck area that falls between hardware and software, ar-
chitectures and mechanisms, and systems and components.

3.5. The effect of processor hardware core solutions

Current DSP processor execution units are deeply pipelined
to increase instruction execution rates. In many cases, how-

ever, DSP processors are used as control processors and have
to handle large interrupt and context switch loads. The result
is a double penalty: the utilization of the pipeline decreases
and the control code is inefficient due to the long pipeline.
For instance, if a processor has a 10-level pipeline and 1/50 of
the instructions are unconditional branches, almost 20% of
the cycles are lost. Improvements offered by the branch pre-
diction capabilities are diluted by the interrupts and context
switches.

The relative sizes of control units of typical low power
DSP processors and microcontrollers have increased dur-
ing recent years due to deeper pipelining. However, when
executing control code, most of the processor is unused.
This situation is encountered with all fine grained hardware
accelerator-based implementations regardless of whether
they are video encoder or 3GPP baseband solutions. Obvi-
ously, rethinking the architectures and their roles in the sys-
tem implementations is necessary. To illustrate the impact
of increasing processor complexity on the energy efficiency,
Table 7 shows the characteristics of 32-bit ARM processors
implemented using a 130 nm CMOS process [5]. It is appar-
ent that the energy efficiencies of processor designs are in-
creasing, but this development has been masked by silicon
process developments. Over the past ten years the relative ef-
ficiency appears to have slipped approximately by a factor of
two.
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Table 8: Approximate efficiency degradations.

Degradation cause
Low
estimate

Probable
degradation

Computational cost of
voice call application

2 2.5

Operating system and
interrupt overheads

1.4 1.6

API and middleware
costs

1.2 1.5

Execution time jitter
provisioning

1.3 2

Processor
energy/instruction

1.8 2.5

Execution pipeline
overheads

1.2 1.5

Total (multiplied) 9.4 45

3.6. Summary of relative performance degradations

When the components of the above analysis are combined
as shown in Table 8, they result in a degradation factor of at
least around 9-10, but probably around 45. These are rela-
tive energy efficiency degradations and illustrate the traded-
off energy efficiency gains at the processing system level. The
probable numbers appear to be in line with the actual ob-
served development.

It is acknowledged in industry that approaches in sys-
tem development have been dictated by the needs of soft-
ware development that has been carried out using the tools
and methods available. Currently, the computing needs are
increasing rapidly, so a shift of focus to energy efficiency is re-
quired. Based on Figure 3, using suitable programmable pro-
cessor architectures can improve the energy efficiency signif-
icantly. However, in baseband signal processing the architec-
tures used already appear fairly optimal. Consequently, other
means need to be explored too.

4. DIRECTIONS FOR RESEARCH ANDDEVELOPMENT

Looking back to the phone of 1995 in Table 1, we may con-
sider what should have been done to improve energy effi-
ciency at the same rate as silicon process improvement. Ob-
viously, due to the choices made by system developers, most
of the factors that degrade the relative energy efficiency are
software related. However, we do not demand changes in
software development processes or architectures that are in-
tended to facilitate human effort. So solutions should pri-
marily be sought from the software/hardware interfacing do-
main, including compilation, and hardware solutions that
enable the building of energy efficient software systems.

To reiterate, the early baseband software was effectively
multi-threaded, and even simultaneously multithreaded
with hardware accelerators executing parallel threads, with-
out interrupt overhead, as shown in Figure 7. In principle, a

suitable compiler could have replaced manual coding in cre-
ating the threads, as the hardware accelerators had determin-
istic latencies. However, interrupts were introduced and later
solutions employed additional means to hide the hardware
from the programmers.

Having witnessed the past choices, their motivations, and
outcomes, we need to ask whether compilers could be used to
hide hardware details instead of using APIs and middleware.
This approach could in many cases cut down the number of
interrupts, reduce the number of tasks and context switches,
and improve code locality— all improving processor utiliza-
tion and energy efficiency. Most importantly, hardware ac-
celerator aware compilation would bridge the software effi-
ciency gap between instruction set extensions and periph-
eral devices, making “medium latency” accelerators attrac-
tive. This would help in cutting the instruction fetch and de-
coding overheads.

The downside of a hardware aware compilation approach
is that the binary software may no longer be portable, but
this is not important for the baseband part. A bigger issue is
the paradigm change that the proposed approach represents.
Compilers have so far been developed for processor cores;
now they would be needed for complete embedded systems.
Whenever the platform changes, the compiler needs to be
upgraded, while currently the changes are concentrated on
the hardware abstraction functionality.

Hardware support for simultaneous fine grained mul-
tithreading is an obvious processor core feature that could
contribute to energy efficiency. This would help in reducing
the costs of scheduling.

Another option that could improve energy efficiency is
the employing of several small processor cores for control-
ling hardware accelerators, rather that a single powerful one.
This simplifies real-time system design and reduces the to-
tal penalty from interrupts, context switches, and execution
time jitter. To give a justification for this approach, we again
observe that theW/MHz figures for the 16-bit ARM7/TDMI
dropped by factor 35 between 0.35 and 0.13 µm CMOS pro-
cesses [5]. Advanced static scheduling and allocation tech-
niques [22] enable constructing efficient tools for this ap-
proach, making it very attractive.

5. SUMMARY

The energy efficiency of mobile phones has not improved at
the rate that might have been expected from the advances in
silicon processes, but it is obviously at a level that satisfies
most users. However, higher data rates and multimedia ap-
plications require significant improvements, and encourage
us to reconsider the ways software is designed, run, and in-
terfaced with hardware.

Significantly improved energy efficiency might be possi-
ble even without any changes to hardware by using software
solutions that reduce overheads and improve processor uti-
lization. Large savings can be expected from applying archi-
tectural approaches that reduce the volume of instructions
fetched and decoded. Obviously, compiler technology is the
key enabler for improvements.
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1 = bit equalizer algorithm
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Figure 7: The execution threads of an early GSM mobile phone.
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